Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Wang, F., Yu, H.-C., Chen, M.-H., Wu, L., Pereira, N., Thornton, K., Van der Ven, A., Zhu, Y., Amatucci, G. G., & Graetz, J. (2012). Tracking lithium transport and electrochemical reactions in nanoparticles. Nature Communications, 3(1).

Authors 10
  1. Feng Wang (first)
  2. Hui-Chia Yu (additional)
  3. Min-Hua Chen (additional)
  4. Lijun Wu (additional)
  5. Nathalie Pereira (additional)
  6. Katsuyo Thornton (additional)
  7. Anton Van der Ven (additional)
  8. Yimei Zhu (additional)
  9. Glenn G. Amatucci (additional)
  10. Jason Graetz (additional)
References 37 Referenced 276
  1. Dunn B., Kamath H., Tarascon J. -M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). (10.1126/science.1212741) / Science by B Dunn (2011)
  2. Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  3. Badway F., Cosandey F., Pereira N., Amatucci G. G. Carbon metal fluoride nanocomposites: structure and electrochemistry of FeF3:C. J. Electrochem. Soc. 150, A1209–A1218 (2003). (10.1149/1.1596162) / J. Electrochem. Soc. by F Badway (2003)
  4. Li H., Balaya P., Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004). (10.1149/1.1801451) / J. Electrochem. Soc. by H Li (2004)
  5. Wang F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011). (10.1021/ja206268a) / J. Am. Chem. Soc. by F Wang (2011)
  6. Balaya P., Li H., Kienle L., Maier J. Fully reversible homogeneous and heterogeneous Li-storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003). (10.1002/adfm.200304406) / Adv. Funct. Mater. by P Balaya (2003)
  7. Bervas M. et al. Investigation of the lithiation and delithiation conversion mechanisms in bismuth fluoride nanocomposites. J. Electrochem. Soc. 153, A799–A808 (2006). (10.1149/1.2167951) / J. Electrochem. Soc. by M Bervas (2006)
  8. Bruce P. G., Scrosati B., Tarascon J. -M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). (10.1002/anie.200702505) / Angew. Chem. Int. Ed. by PG Bruce (2008)
  9. Taberna P. L., Mitra S., Poizot P., Simon P., Tarascon J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006). (10.1038/nmat1672) / Nat. Mater. by PL Taberna (2006)
  10. Chao S. -C. et al. In-situ transmission X-ray microscopy study on working SnO anode particle of Li-ion batteries. J. Electrochem. Soc. 158, A1335–A1339 (2011). (10.1149/2.043112jes) / J. Electrochem. Soc. by S-C Chao (2011)
  11. Meirer F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Sync. Rad. 18, 773–781 (2011). (10.1107/S0909049511019364) / J. Sync. Rad. by F Meirer (2011)
  12. Brazier A. et al. First cross-section observation of an all solid-state lithium-ion ‘nanobattery’ by transmission electron microscopy. Chem. Mater. 20, 2352–2359 (2008). (10.1021/cm7033933) / Chem. Mater. by A Brazier (2008)
  13. Yamamoto K. et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. 49, 4516–4519 (2010). (10.1002/ange.200907319) / Angew. Chem. Int. Ed. by K Yamamoto (2010)
  14. Meng Y. S. et al. In situ analytical electron microscopy for probing nanoscale electrochemistry. Electrochem. Soc. Interface 20, 49–53 (2011). (10.1149/2.F04113if) / Electrochem. Soc. Interface by YS Meng (2011)
  15. Huang J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010). (10.1126/science.1195628) / Science by JY Huang (2010)
  16. Wang C. M. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010). (10.1557/JMR.2010.0198) / J. Mater. Res. by CM Wang (2010)
  17. Wang F., Malac M., Egerton R. F. Energy-loss near-edge fine structures of iron nanoparticles. Micron 37, 316–323 (2006). (10.1016/j.micron.2005.12.003) / Micron by F Wang (2006)
  18. Lu K., Zhao Y. H. Experimental evidences of lattice distortion in nanocrystalline materials. Nanostr. Mater. 12, 559–562 (1999). (10.1016/S0965-9773(99)00183-X) / Nanostr. Mater. by K Lu (1999)
  19. Qing W., Nagase T., Umakoshi Y., Szpunar J. A. Relationship between microstrain and lattice parameter change in nanocrystalline materials. Phil. Mag. Lett. 88, 169–179 (2008). (10.1080/09500830701840155) / Phil. Mag. Lett. by W Qing (2008)
  20. Badway F., Cosandey F., Pereira N., Amatucci G. G. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003). (10.1149/1.1602454) / J. Electrochem. Soc. by F Badway (2003)
  21. Wang F. et al. Chemical distribution and bonding state of lithium in intercalated graphite: identification with optimized electron energy-loss spectroscopy. ACS Nano 5, 1190–1197 (2011). (10.1021/nn1028168) / ACS Nano by F Wang (2011)
  22. Shyam B. et al. Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis. Angew. Chem. Int. Ed. 20, 4636–4639 (2012). / Angew. Chem. Int. Ed. by B Shyam (2012)
  23. Ma Y., Garofalini S. H. Atomistic insights into the conversion reaction in iron fluoride: a dynamically adaptive force field approach. J. Am. Chem. Soc. 134, 8205–8211 (2012). (10.1021/ja301637c) / J. Am. Chem. Soc. by Y Ma (2012)
  24. Doe R. E., Persson K. A., Meng Y. S., Ceder G. First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibium conversion reactions of iron fluorides with lithium. Chem. Mater. 20, 5274–5283 (2008). (10.1021/cm801105p) / Chem. Mater. by RE Doe (2008)
  25. Cahn J. W., Hilliard J. E. Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258–267 (1958). (10.1063/1.1744102) / J. Chem. Phys. by JW Cahn (1958)
  26. Yu H.-C., Chen H.-Y., Thornton K. Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Model. Simul. Mater. Sci. Eng. 20, 075008 (2012). (10.1088/0965-0393/20/7/075008) / Model. Simul. Mater. Sci. Eng. by H-C Yu (2012)
  27. Cabana J., Monconduit L., Larcher D., Palacín M. R. Beyond intercalation-based Li-ion batteries: state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010). (10.1002/adma.201000717) / Adv. Mater. by J Cabana (2010)
  28. Hu Y.-S. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 5, 713–717 (2006). (10.1038/nmat1709) / Nat. Mater. by Y-S Hu (2006)
  29. Islam M. M., Bredow T. Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C 113, 672–676 (2009). (10.1021/jp807048p) / J. Phys. Chem. C by MM Islam (2009)
  30. Liu X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011). (10.1021/nl201684d) / Nano Lett. by XH Liu (2011)
  31. Pereira N., Badway F., Wartelsky M., Gunn S., Amatucci G. G. Iron Oxyfluorides as high-capacity cathode materials for lithium batteries. J. Electrochem. Soc. 156, A407–A416 (2009). (10.1149/1.3106132) / J. Electrochem. Soc. by N Pereira (2009)
  32. Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992). (10.1103/PhysRevB.45.13244) / Phys. Rev. B by JP Perdew (1992)
  33. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  34. Blochl P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blochl (1994)
  35. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  36. Strempfer J., Rutt U., Bayrakci S. P. Magnetic properties of transition metal fluorides MF2 (M=Mn, Fe, Co, Ni) via high-energy photon diffraction. Phys. Rev. B 69, 014417 (2004). (10.1103/PhysRevB.69.014417) / Phys. Rev. B by J Strempfer (2004)
  37. Greneche J. M. et al. Structural aspects of amorphous iron(III) fluorides. J. Phys. C Solid State Phys. 21, 1351–1361 (1988). (10.1088/0022-3719/21/8/011) / J. Phys. C Solid State Phys. by JM Greneche (1988)
Dates
Type When
Created 12 years, 9 months ago (Nov. 13, 2012, 12:07 p.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:27 p.m.)
Indexed 10 minutes ago (Aug. 28, 2025, 3:26 a.m.)
Issued 12 years, 9 months ago (Nov. 13, 2012)
Published 12 years, 9 months ago (Nov. 13, 2012)
Published Online 12 years, 9 months ago (Nov. 13, 2012)
Funders 0

None

@article{Wang_2012, title={Tracking lithium transport and electrochemical reactions in nanoparticles}, volume={3}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2185}, DOI={10.1038/ncomms2185}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wang, Feng and Yu, Hui-Chia and Chen, Min-Hua and Wu, Lijun and Pereira, Nathalie and Thornton, Katsuyo and Van der Ven, Anton and Zhu, Yimei and Amatucci, Glenn G. and Graetz, Jason}, year={2012}, month=nov }