Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
37
Referenced
276
-
Dunn B., Kamath H., Tarascon J. -M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
(
10.1126/science.1212741
) / Science by B Dunn (2011) -
Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).
(
10.1038/35035045
) / Nature by P Poizot (2000) -
Badway F., Cosandey F., Pereira N., Amatucci G. G. Carbon metal fluoride nanocomposites: structure and electrochemistry of FeF3:C. J. Electrochem. Soc. 150, A1209–A1218 (2003).
(
10.1149/1.1596162
) / J. Electrochem. Soc. by F Badway (2003) -
Li H., Balaya P., Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).
(
10.1149/1.1801451
) / J. Electrochem. Soc. by H Li (2004) -
Wang F. et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828–18836 (2011).
(
10.1021/ja206268a
) / J. Am. Chem. Soc. by F Wang (2011) -
Balaya P., Li H., Kienle L., Maier J. Fully reversible homogeneous and heterogeneous Li-storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003).
(
10.1002/adfm.200304406
) / Adv. Funct. Mater. by P Balaya (2003) -
Bervas M. et al. Investigation of the lithiation and delithiation conversion mechanisms in bismuth fluoride nanocomposites. J. Electrochem. Soc. 153, A799–A808 (2006).
(
10.1149/1.2167951
) / J. Electrochem. Soc. by M Bervas (2006) -
Bruce P. G., Scrosati B., Tarascon J. -M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).
(
10.1002/anie.200702505
) / Angew. Chem. Int. Ed. by PG Bruce (2008) -
Taberna P. L., Mitra S., Poizot P., Simon P., Tarascon J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006).
(
10.1038/nmat1672
) / Nat. Mater. by PL Taberna (2006) -
Chao S. -C. et al. In-situ transmission X-ray microscopy study on working SnO anode particle of Li-ion batteries. J. Electrochem. Soc. 158, A1335–A1339 (2011).
(
10.1149/2.043112jes
) / J. Electrochem. Soc. by S-C Chao (2011) -
Meirer F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Sync. Rad. 18, 773–781 (2011).
(
10.1107/S0909049511019364
) / J. Sync. Rad. by F Meirer (2011) -
Brazier A. et al. First cross-section observation of an all solid-state lithium-ion ‘nanobattery’ by transmission electron microscopy. Chem. Mater. 20, 2352–2359 (2008).
(
10.1021/cm7033933
) / Chem. Mater. by A Brazier (2008) -
Yamamoto K. et al. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed. 49, 4516–4519 (2010).
(
10.1002/ange.200907319
) / Angew. Chem. Int. Ed. by K Yamamoto (2010) -
Meng Y. S. et al. In situ analytical electron microscopy for probing nanoscale electrochemistry. Electrochem. Soc. Interface 20, 49–53 (2011).
(
10.1149/2.F04113if
) / Electrochem. Soc. Interface by YS Meng (2011) -
Huang J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).
(
10.1126/science.1195628
) / Science by JY Huang (2010) -
Wang C. M. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25, 1541–1547 (2010).
(
10.1557/JMR.2010.0198
) / J. Mater. Res. by CM Wang (2010) -
Wang F., Malac M., Egerton R. F. Energy-loss near-edge fine structures of iron nanoparticles. Micron 37, 316–323 (2006).
(
10.1016/j.micron.2005.12.003
) / Micron by F Wang (2006) -
Lu K., Zhao Y. H. Experimental evidences of lattice distortion in nanocrystalline materials. Nanostr. Mater. 12, 559–562 (1999).
(
10.1016/S0965-9773(99)00183-X
) / Nanostr. Mater. by K Lu (1999) -
Qing W., Nagase T., Umakoshi Y., Szpunar J. A. Relationship between microstrain and lattice parameter change in nanocrystalline materials. Phil. Mag. Lett. 88, 169–179 (2008).
(
10.1080/09500830701840155
) / Phil. Mag. Lett. by W Qing (2008) -
Badway F., Cosandey F., Pereira N., Amatucci G. G. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003).
(
10.1149/1.1602454
) / J. Electrochem. Soc. by F Badway (2003) -
Wang F. et al. Chemical distribution and bonding state of lithium in intercalated graphite: identification with optimized electron energy-loss spectroscopy. ACS Nano 5, 1190–1197 (2011).
(
10.1021/nn1028168
) / ACS Nano by F Wang (2011) - Shyam B. et al. Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis. Angew. Chem. Int. Ed. 20, 4636–4639 (2012). / Angew. Chem. Int. Ed. by B Shyam (2012)
-
Ma Y., Garofalini S. H. Atomistic insights into the conversion reaction in iron fluoride: a dynamically adaptive force field approach. J. Am. Chem. Soc. 134, 8205–8211 (2012).
(
10.1021/ja301637c
) / J. Am. Chem. Soc. by Y Ma (2012) -
Doe R. E., Persson K. A., Meng Y. S., Ceder G. First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibium conversion reactions of iron fluorides with lithium. Chem. Mater. 20, 5274–5283 (2008).
(
10.1021/cm801105p
) / Chem. Mater. by RE Doe (2008) -
Cahn J. W., Hilliard J. E. Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28, 258–267 (1958).
(
10.1063/1.1744102
) / J. Chem. Phys. by JW Cahn (1958) -
Yu H.-C., Chen H.-Y., Thornton K. Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Model. Simul. Mater. Sci. Eng. 20, 075008 (2012).
(
10.1088/0965-0393/20/7/075008
) / Model. Simul. Mater. Sci. Eng. by H-C Yu (2012) -
Cabana J., Monconduit L., Larcher D., Palacín M. R. Beyond intercalation-based Li-ion batteries: state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).
(
10.1002/adma.201000717
) / Adv. Mater. by J Cabana (2010) -
Hu Y.-S. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 5, 713–717 (2006).
(
10.1038/nmat1709
) / Nat. Mater. by Y-S Hu (2006) -
Islam M. M., Bredow T. Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C 113, 672–676 (2009).
(
10.1021/jp807048p
) / J. Phys. Chem. C by MM Islam (2009) -
Liu X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).
(
10.1021/nl201684d
) / Nano Lett. by XH Liu (2011) -
Pereira N., Badway F., Wartelsky M., Gunn S., Amatucci G. G. Iron Oxyfluorides as high-capacity cathode materials for lithium batteries. J. Electrochem. Soc. 156, A407–A416 (2009).
(
10.1149/1.3106132
) / J. Electrochem. Soc. by N Pereira (2009) -
Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).
(
10.1103/PhysRevB.45.13244
) / Phys. Rev. B by JP Perdew (1992) -
Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Blochl P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blochl (1994) -
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Strempfer J., Rutt U., Bayrakci S. P. Magnetic properties of transition metal fluorides MF2 (M=Mn, Fe, Co, Ni) via high-energy photon diffraction. Phys. Rev. B 69, 014417 (2004).
(
10.1103/PhysRevB.69.014417
) / Phys. Rev. B by J Strempfer (2004) -
Greneche J. M. et al. Structural aspects of amorphous iron(III) fluorides. J. Phys. C Solid State Phys. 21, 1351–1361 (1988).
(
10.1088/0022-3719/21/8/011
) / J. Phys. C Solid State Phys. by JM Greneche (1988)
Dates
Type | When |
---|---|
Created | 12 years, 9 months ago (Nov. 13, 2012, 12:07 p.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 7:27 p.m.) |
Indexed | 10 minutes ago (Aug. 28, 2025, 3:26 a.m.) |
Issued | 12 years, 9 months ago (Nov. 13, 2012) |
Published | 12 years, 9 months ago (Nov. 13, 2012) |
Published Online | 12 years, 9 months ago (Nov. 13, 2012) |
@article{Wang_2012, title={Tracking lithium transport and electrochemical reactions in nanoparticles}, volume={3}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2185}, DOI={10.1038/ncomms2185}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wang, Feng and Yu, Hui-Chia and Chen, Min-Hua and Wu, Lijun and Pereira, Nathalie and Thornton, Katsuyo and Van der Ven, Anton and Zhu, Yimei and Amatucci, Glenn G. and Graetz, Jason}, year={2012}, month=nov }