Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Minamisawa, R. A., Süess, M. J., Spolenak, R., Faist, J., David, C., Gobrecht, J., Bourdelle, K. K., & Sigg, H. (2012). Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Nature Communications, 3(1).

Authors 8
  1. R.A. Minamisawa (first)
  2. M.J. Süess (additional)
  3. R. Spolenak (additional)
  4. J. Faist (additional)
  5. C. David (additional)
  6. J. Gobrecht (additional)
  7. K.K. Bourdelle (additional)
  8. H. Sigg (additional)
References 26 Referenced 131
  1. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10 nm regime. Science 306, 2057–2060 (2004). (10.1126/science.1100731) / Science by M Ieong (2004)
  2. Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nat. Mat. 6, 810–812 (2007). (10.1038/nmat2014) / Nat. Mat. by R Chau (2007)
  3. Ferry, D. K. Nanowires in nanoelectronics. Science 319, 579–580 (2008). (10.1126/science.1154446) / Science by DK Ferry (2008)
  4. Chu, M., Sun, Y., Aghoram, U. & Thompson, S. E. Strain: a solution for higher carrier mobility in scaled MOSFETs. Annu. Rev. Mater. Res. 39, 203–229 (2009). (10.1146/annurev-matsci-082908-145312) / Annu. Rev. Mater. Res. by M Chu (2009)
  5. Auth, C. et al. A 22 nm high performance and low-power CMOS technology featuring fully-depleted trigate transistors, in Symposia on VLSI Technology and Circuits. 131–132 (2012). (10.1109/CICC.2012.6330657)
  6. Thompson, S. E., Sun, G., Choi, Y. S. & Nishida, T. Uniaxial process induced strained Si: extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010–1020 (2006). (10.1109/TED.2006.872088) / IEEE Trans. Electron Devices by SE Thompson (2006)
  7. International Technology Roadmap for Semiconductors 2010 report. Available at http://www.itrs.net/home.html.
  8. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W. & Fitzgerald, E. A. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998). (10.1063/1.121162) / Appl. Phys. Lett. by MT Currie (1998)
  9. Paul, D. J. Si/SiGe heterostructures: from material and physics to devices and circuits. Semicon. Sci. Tech. 19, R75–R108 (2004). (10.1088/0268-1242/19/10/R02) / Semicon. Sci. Tech. by DJ Paul (2004)
  10. Hashemi, P., Gomez, L. & Hoyt, J. L. Gate-all-around n-MOSFETs with uniaxial tensile strain-induced performance enhancement scalable to sub-10-nm nanowire diameter. IEEE Electron Device Lett. 30, 401–403 (2009). (10.1109/LED.2009.2013877) / IEEE Electron Device Lett. by P Hashemi (2009)
  11. Ghyselen, B. et al. Engineering strained silicon on insulator wafers with the Smart Cut™ technology. Solid State Electron. 48, 1285–1296 (2004). (10.1016/j.sse.2004.01.011) / Solid State Electron. by B Ghyselen (2004)
  12. Lugstein, A., Steinmair, M., Steiger, A., Kosina, H. & Bertagnolli, E. Anomalous piezoresistance effect in ultra strained silicon nanowires. NanoLetters 10, 3204–3208 (2010). (10.1021/nl102179c) / NanoLetters by A Lugstein (2010)
  13. Roberts, M. M. et al. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mat. 5, 388–393 (2006). (10.1038/nmat1606) / Nat. Mat. by MM Roberts (2006)
  14. Bauman, J. T. Fatigue, Stress, and Strain of Rubber Components: Guide for Design Engineers (Hanser Publication, Cincinnati, 2008). (10.3139/9783446433403.fm)
  15. De Wolf, I., Maes, H. E. & Jones, S. K. Stress measurements in silicon devices through Raman spectroscopy: bridging the gap between theory and experiment. J. Appl. Phys. 79, 7148–7156 (1996). (10.1063/1.361485) / J. Appl. Phys. by I De Wolf (1996)
  16. Minamisawa, R. A. et al. Elastic strain and dopant activation in ion implanted strained Si nanowires. J. Appl. Phys. 108, 124908 (2010). (10.1063/1.3520665) / J. Appl. Phys. by RA Minamisawa (2010)
  17. Chen, F. et al. Conduction band structure and electron mobility in uniaxially strained Si via applied strain in nanomembranes. J. Phys. D: Appl. Phys. 44, 325107 (2011). (10.1088/0022-3727/44/32/325107) / J. Phys. D: Appl. Phys. by F Chen (2011)
  18. Friedman, R. S., McAlpine, M. C., Ricketts, D. S., Ham, D. & Lieber, C. M. High-speed integrated nanowire circuits. Nature 434, 1085 (2005). (10.1038/4341085a) / Nature by RS Friedman (2005)
  19. Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J. E. & Heath, J. R. Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits. Science 310, 465–468 (2005). (10.1126/science.1114757) / Science by R Beckman (2005)
  20. Gunawan, O. et al. Measurement of carrier mobility in silicon nanowires. NanoLetters 8, 1566–1571 (2008). (10.1021/nl072646w) / NanoLetters by O Gunawan (2008)
  21. Moselung, K. E. et al. The high mobility bended n-channel silicon nanowire transistor. IEEE Transactions on Electron Devices 57, 866–876 (2010). (10.1109/TED.2010.2040939) / IEEE Transactions on Electron Devices by KE Moselung (2010)
  22. Colinge, J.- P. FinFETs and other multi-gate transistors (Springer, Cambridge, 2008). (10.1007/978-0-387-71752-4)
  23. Smith, J. T. et al. Silicon nanowire tunneling field-effect transistor arrays: improving subthreshold performance using excimer laser annealing. IEEE Transact. Electron Devices 58, 1822–1829 (2011). (10.1109/TED.2011.2135355) / IEEE Transact. Electron Devices by JT Smith (2011)
  24. Zhu, Y., Xu, F., Qin, Q., Fung, W. Y. & Lu, W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. NanoLetters 9, 3934–3939 (2009). (10.1021/nl902132w) / NanoLetters by Y Zhu (2009)
  25. Bhaskar, U. et al. Onchip tensile testing of nanoscale silicon freestanding beams. J. Mater. Res. 27, 571–579 (2011). (10.1557/jmr.2011.340) / J. Mater. Res. by U Bhaskar (2011)
  26. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Optics Lett. 35, 679–681 (2010). (10.1364/OL.35.000679) / Optics Lett. by J Liu (2010)
Dates
Type When
Created 12 years, 11 months ago (Oct. 1, 2012, 12:23 p.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:23 p.m.)
Indexed 3 months, 1 week ago (May 23, 2025, 4:11 a.m.)
Issued 12 years, 11 months ago (Oct. 2, 2012)
Published 12 years, 11 months ago (Oct. 2, 2012)
Published Online 12 years, 11 months ago (Oct. 2, 2012)
Funders 0

None

@article{Minamisawa_2012, title={Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%}, volume={3}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms2102}, DOI={10.1038/ncomms2102}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Minamisawa, R.A. and Süess, M.J. and Spolenak, R. and Faist, J. and David, C. and Gobrecht, J. and Bourdelle, K.K. and Sigg, H.}, year={2012}, month=oct }