Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Søndergaard, T., Novikov, S. M., Holmgaard, T., Eriksen, R. L., Beermann, J., Han, Z., Pedersen, K., & Bozhevolnyi, S. I. (2012). Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nature Communications, 3(1).

Authors 8
  1. Thomas Søndergaard (first)
  2. Sergey M. Novikov (additional)
  3. Tobias Holmgaard (additional)
  4. René L. Eriksen (additional)
  5. Jonas Beermann (additional)
  6. Zhanghua Han (additional)
  7. Kjeld Pedersen (additional)
  8. Sergey I. Bozhevolnyi (additional)
References 34 Referenced 284
  1. Pfund, A. H. The optical properties of metallic and crystalline powders. J. Opt. Soc. Am. 23, 375–378 (1933). (10.1364/JOSA.23.000375) / J. Opt. Soc. Am. by AH Pfund (1933)
  2. Vorobyev, A. Y. & Guo, C. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B 72, 195422 (2005). (10.1103/PhysRevB.72.195422) / Phys. Rev. B by AY Vorobyev (2005)
  3. Vorobyev, A. Y. & Guo, C. Femtosecond laser blackening of platinum. J. Appl. Phys. 104, 053516 (2008). (10.1063/1.2975989) / J. Appl. Phys. by AY Vorobyev (2008)
  4. Wu, C. et al. Near-unity below-band-gap absorption by microstructured silicon. Appl. Phys. Lett. 78, 1850–1852 (2001). (10.1063/1.1358846) / Appl. Phys. Lett. by C Wu (2001)
  5. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010). (10.1038/nmat2630) / Nat. Mater. by JA Schuller (2010)
  6. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). (10.1038/nmat2629) / Nat. Mater. by HA Atwater (2010)
  7. Teperik, T. V. et al. Omnidirectional absorption in nanostructured metal surfaces. Nat. Photon. 2, 299–301 (2008). (10.1038/nphoton.2008.76) / Nat. Photon. by TV Teperik (2008)
  8. Bonod, N., Tayeb, G., Maystre, D., Enoch, S. & Popov, E. Total absorption of light by lamellar metallic gratings. Opt. Express 16, 15431–15438 (2008). (10.1364/OE.16.015431) / Opt. Express by N Bonod (2008)
  9. Le Perchec, J., Quemerais, P., Barbara, A. & Lopez-Rios, T. Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100, 066408 (2008). (10.1103/PhysRevLett.100.066408) / Phys. Rev. Lett. by J Le Perchec (2008)
  10. Hao, J. et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010). (10.1063/1.3442904) / Appl. Phys. Lett. by J Hao (2010)
  11. Tittl, A. et al. Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett. 11, 4366–4369 (2011). (10.1021/nl202489g) / Nano Lett. by A Tittl (2011)
  12. Aydin, K., Ferry, V. E., Briggis, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011). (10.1038/ncomms1528) / Nat. Commun. by K Aydin (2011)
  13. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings. Phys. Rev. B 78, 205405 (2008). (10.1103/PhysRevB.78.205405) / Phys. Rev. B by VG Kravets (2008)
  14. Kravets, V. G., Neubeck, S. & Grigorenko, A. N. Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix. Phys. Rev. B 81, 165401 (2010). (10.1103/PhysRevB.81.165401) / Phys. Rev. B by VG Kravets (2010)
  15. Hedayati, M. K. et al. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 23, 5410–5414 (2011). (10.1002/adma.201102646) / Adv. Mater. by MK Hedayati (2011)
  16. Aubry, A. et al. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10, 2574–2579 (2010). (10.1021/nl101235d) / Nano Lett. by A Aubry (2010)
  17. Fernández-Domínguez, A. I., Maier, S. A. & Pendry, J. B. Collection and concentration of light by touching spheres: a transformation optics approach. Phys. Rev. Lett. 105, 266807 (2010). (10.1103/PhysRevLett.105.266807) / Phys. Rev. Lett. by AI Fernández-Domínguez (2010)
  18. Narimanov, E. E. & Kildishev, A. V. Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009). (10.1063/1.3184594) / Appl. Phys. Lett. by EE Narimanov (2009)
  19. Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 5, 687–692 (2009). (10.1038/nphys1338) / Nat. Phys. by DA Genov (2009)
  20. Nerkararyan, K. V., Nerkararyan, S. K. & Bozhevolnyi, S. I. Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons. Opt. Lett. 36, 4311–4313 (2011). (10.1364/OL.36.004311) / Opt. Lett. by KV Nerkararyan (2011)
  21. Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011). (10.1103/PhysRevLett.107.045901) / Phys. Rev. Lett. by X Liu (2011)
  22. Nerkararyan, K. V. Superfocusing of a surface polariton in a wedge-like structure. Phys. Lett. A 237, 103–105 (1997). (10.1016/S0375-9601(97)00722-6) / Phys. Lett. A by KV Nerkararyan (1997)
  23. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004). (10.1103/PhysRevLett.93.137404) / Phys. Rev. Lett. by MI Stockman (2004)
  24. Pile, D. F. P. & Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006). (10.1063/1.2236219) / Appl. Phys. Lett. by DFP Pile (2006)
  25. Søndergaard, T. et al. Resonant plasmon nanofocusing by closed tapered gaps. Nano Lett. 10, 291–295 (2010). (10.1021/nl903563e) / Nano Lett. by T Søndergaard (2010)
  26. Søndergaard, T. & Bozhevolnyi, S. I. Surface-plasmon polariton resonances in triangular-groove metal gratings. Phys. Rev. B 80, 195407 (2009). (10.1103/PhysRevB.80.195407) / Phys. Rev. B by T Søndergaard (2009)
  27. Beermann, J. et al. Localized field enhancements in two-dimensional V-groove metal arrays. J. Opt. Soc. Am. B 28, 372–378 (2011). (10.1364/JOSAB.28.000372) / J. Opt. Soc. Am. B by J Beermann (2011)
  28. Bozhevolnyi, S. I. & Jung, J. Scaling for gap plasmon based waveguides. Opt. Express 16, 2676–2684 (2008). (10.1364/OE.16.002676) / Opt. Express by SI Bozhevolnyi (2008)
  29. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). (10.1103/PhysRevB.6.4370) / Phys. Rev. B by PB Johnson (1972)
  30. Bozhevolnyi, S. I. in Plasmonic Nanoguides and Circuits (ed. Bozhevolnyi, S. I.) 1–31 (Pan Stanford, 2009). (10.1142/9789814241335)
  31. de Abajo, F. J. G. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. 112, 17983–17987 (2008). / J. Phys. Chem. by FJG de Abajo (2008)
  32. Fernández-Domínguez, A. I., Wiener, A., García-Vidal, F. J., Maier, S. A. & Pendry, J. B. Transformation-optics description of nonlocal effects in plasmonic nanostructures. Phys. Rev. Lett. 108, 106802 (2012). (10.1103/PhysRevLett.108.106802) / Phys. Rev. Lett. by AI Fernández-Domínguez (2012)
  33. Grand, J. et al. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiment and theory. Plasmonics 1, 135–140 (2006). (10.1007/s11468-006-9014-7) / Plasmonics by J Grand (2006)
  34. Lindquist, N. C., Nagpal, P., McPeak, K. M., Norris, D. J. & Oh, S.- H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 75, 1–61 (2012). (10.1088/0034-4885/75/3/036501) / Rep. Prog. Phys. by NC Lindquist (2012)
Dates
Type When
Created 13 years, 1 month ago (July 24, 2012, 6:40 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:31 p.m.)
Indexed 16 hours, 46 minutes ago (Aug. 31, 2025, 6:27 a.m.)
Issued 13 years, 1 month ago (July 24, 2012)
Published 13 years, 1 month ago (July 24, 2012)
Published Online 13 years, 1 month ago (July 24, 2012)
Funders 0

None

@article{S_ndergaard_2012, title={Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves}, volume={3}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1976}, DOI={10.1038/ncomms1976}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Søndergaard, Thomas and Novikov, Sergey M. and Holmgaard, Tobias and Eriksen, René L. and Beermann, Jonas and Han, Zhanghua and Pedersen, Kjeld and Bozhevolnyi, Sergey I.}, year={2012}, month=jul }