Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Borisevich, A. Y., Eliseev, E. A., Morozovska, A. N., Cheng, C.-J., Lin, J.-Y., Chu, Y. H., Kan, D., Takeuchi, I., Nagarajan, V., & Kalinin, S. V. (2012). Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Communications, 3(1).

Authors 10
  1. A.Y. Borisevich (first)
  2. E.A. Eliseev (additional)
  3. A.N. Morozovska (additional)
  4. C.-J. Cheng (additional)
  5. J.-Y. Lin (additional)
  6. Y.H. Chu (additional)
  7. D. Kan (additional)
  8. I. Takeuchi (additional)
  9. V. Nagarajan (additional)
  10. S.V. Kalinin (additional)
References 60 Referenced 156
  1. Noheda, B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002). (10.1016/S1359-0286(02)00015-3) / Curr. Opin. Solid State Mater. Sci. by B Noheda (2002)
  2. Woodward, D. I., Knudsen, J. & Reaney, I. M. Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys. Rev. B 72, 104110 (2005). (10.1103/PhysRevB.72.104110) / Phys. Rev. B by DI Woodward (2005)
  3. Cheng, C. J. et al. Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 80, 014109 (2009). (10.1103/PhysRevB.80.014109) / Phys. Rev. B by CJ Cheng (2009)
  4. Ahn, K. H., Lookman, T. & Bishop, A. R. Strain-induced metal-insulator phase coexistence in perovskite manganites. Nature 428, 401–404 (2004). (10.1038/nature02364) / Nature by KH Ahn (2004)
  5. Khachaturyan, A. G. & Viehland, D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part I. Decomposition and confined displacive transformation. Metallurgical Mater. Trans. A 38A, 2308–2316 (2007). (10.1007/s11661-007-9253-z) / Metallurgical Mater. Trans. A by AG Khachaturyan (2007)
  6. Khachaturyan, A. G. & Viehland, D. Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part II. Giant magnetostriction and elastic softening. Metallurgical Mater. Trans. A 38A, 2317–2328 (2007). (10.1007/s11661-007-9252-0) / Metallurgical Mater. Trans. A by AG Khachaturyan (2007)
  7. Wadhavan, V. Introduction to Ferroic Materials (Gordon and Breach: Amsrterdam, 2000). (10.1201/9781482283051)
  8. Bokov, A. A. & Ye, Z. G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006). (10.1007/s10853-005-5915-7) / J. Mater. Sci. by AA Bokov (2006)
  9. Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006). (10.1038/nature04854) / Nature by Z Kutnjak (2006)
  10. Pirc, R., Blinc, R. & Scott, J. F. Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties. Phys. Rev. B 79, 214114 (2009). (10.1103/PhysRevB.79.214114) / Phys. Rev. B by R Pirc (2009)
  11. Noheda, B. & Cox, D. E. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 79, 5–20 (2006). (10.1080/01411590500467262) / Phase Transitions by B Noheda (2006)
  12. Khachaturyan, A. G. Ferroelectric solid solutions with morphotropic boundary: rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states. Philos. Mag. 90, 37–60 (2010). (10.1080/14786430903074789) / Philos. Mag. by AG Khachaturyan (2010)
  13. Byrne, D., Schilling, A., Scott, J. F. & Gregg, J. M. Ordered arrays of lead zirconium titanate nanorings. Nanotechnology 19, 165608 (2008). (10.1088/0957-4484/19/16/165608) / Nanotechnology by D Byrne (2008)
  14. Eitel, R. & Randall, C. A. Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3 . Phys. Rev. B 75, 094106 (2007). (10.1103/PhysRevB.75.094106) / Phys. Rev. B by R Eitel (2007)
  15. Scholz, T. et al. Ferroelectric properties of ruthenium-doped lead zinc niobate-lead titanate single crystal. J. Appl. Phys. 106, 074108 (2009). (10.1063/1.3238487) / J. Appl. Phys. by T Scholz (2009)
  16. Zekria, D., Shuvaeva, V. A. & Glazer, A. M. Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3-PbTiO3 . J. Phys. Condens. Matter 17, 1593–1600 (2005). (10.1088/0953-8984/17/10/014) / J. Phys. Condens. Matter by D Zekria (2005)
  17. Tao, J. et al. Direct imaging of nanoscale phase separation in La0.55Ca0.45MnO3: relationship to colossal magnetoresistance. Phys. Rev. Lett. 103, 097202 (2009). (10.1103/PhysRevLett.103.097202) / Phys. Rev. Lett. by J Tao (2009)
  18. Khomchenko, V. A. et al. Rhombohedral-to-orthorhombic transition and multiferroic properties of Dy-substituted BiFeO3 . J. Appl. Phys. 108, 074109 (2010). (10.1063/1.3486500) / J. Appl. Phys. by VA Khomchenko (2010)
  19. Kan, D. et al. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3 . Adv. Funct. Mater. 20, 1108–1115 (2010). (10.1002/adfm.200902017) / Adv. Funct. Mater. by D Kan (2010)
  20. Karimi, S., Reaney, I. M., Han, Y., Pokorny, J. & Sterianou, I. Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102–5112 (2009). (10.1007/s10853-009-3545-1) / J. Mater. Sci. by S Karimi (2009)
  21. Cheng, C. J., Borisevich, A. Y., Kan, D., Takeuchi, I. & Nagarajan, V. Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588–2596 (2010). (10.1021/cm903618y) / Chem. Mater. by CJ Cheng (2010)
  22. Balashova, E. V. & Tagantsev, A. K. Polarization response of crystals with structural and ferroelectric instabilities. Phys. Rev. B 48, 9979–9986 (1993). (10.1103/PhysRevB.48.9979) / Phys. Rev. B by EV Balashova (1993)
  23. Borisevich, A. Y. et al. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105, 087204 (2010). (10.1103/PhysRevLett.105.087204) / Phys. Rev. Lett. by AY Borisevich (2010)
  24. Chisholm, M. F., Luo, W. D., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010). (10.1103/PhysRevLett.105.197602) / Phys. Rev. Lett. by MF Chisholm (2010)
  25. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). (10.1002/adma.200802849) / Adv. Mater. by G Catalan (2009)
  26. Lubk, A., Gemming, S. & Spaldin, N. A. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009). (10.1103/PhysRevB.80.104110) / Phys. Rev. B by A Lubk (2009)
  27. Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011). (10.1021/nl1041808) / Nano Lett. by CT Nelson (2011)
  28. Park, T. J. et al. Electronic structure and chemistry of iron-based metal oxide nanostructured materials: a NEXAFS investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4 . J. Phys. Chem. C 112, 10359–10369 (2008). (10.1021/jp801449p) / J. Phys. Chem. C by TJ Park (2008)
  29. Higuchi, T. et al. Effect of Mn substitution for multiferroic BiFeO3 probed by high-resolution soft-X-ray spectroscopy. Jpn. J. Appl. Phys. 47, 7570–7573 (2008). (10.1143/JJAP.47.7570) / Jpn. J. Appl. Phys. by T Higuchi (2008)
  30. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B 71, 014113 (2005). (10.1103/PhysRevB.71.014113) / Phys. Rev. B by JB Neaton (2005)
  31. Wang, H., Zheng, Y., Cai, M. Q., Huang, H. T. & Chan, H. L. W. First-principles study on the electronic and optical properties of BiFeO3 . Solid State Commun. 149, 641–644 (2009). (10.1016/j.ssc.2009.01.023) / Solid State Commun. by H Wang (2009)
  32. Viehland, D., Dai, X. H., Li, J. F. & Xu, Z. Effects of quenched disorder on La-modified lead zirconate titanate: long- and short-range ordered structurally incommensurate phases, and glassy polar clusters. J. Appl. Phys. 84, 458–471 (1998). (10.1063/1.368049) / J. Appl. Phys. by D Viehland (1998)
  33. Jin, Y. M., Wang, Y. U., Khachaturyan, A. G., Li, J. F. & Viehland, D. Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601 (2003). (10.1103/PhysRevLett.91.197601) / Phys. Rev. Lett. by YM Jin (2003)
  34. Wang, Y. U. Diffraction theory of nanotwin superlattices with low symmetry phase. Phys. Rev. B 74, 104109 (2006). (10.1103/PhysRevB.74.104109) / Phys. Rev. B by YU Wang (2006)
  35. Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008). (10.1038/nature06459) / Nature by M Ahart (2008)
  36. Eliseev, E. A., Morozovska, A. N., Glinchuk, M. D. & Blinc, R. Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79, 165433 (2009). (10.1103/PhysRevB.79.165433) / Phys. Rev. B by EA Eliseev (2009)
  37. Berezovsky, S. V., Korda, V. Y. & Klepikov, V. F. Multilevel genetic-algorithm optimization of the thermodynamic analysis of the incommensurate phase in ferroelectric Sn2P2Se6 . Phys. Rev. B 64, 064103 (2001). (10.1103/PhysRevB.64.064103) / Phys. Rev. B by SV Berezovsky (2001)
  38. Levanyuk, A. P., Minyukov, S. A. & Cano, A. Universal mechanism of discontinuity of commensurate-incommensurate transitions in three-dimensional solids: strain dependence of soliton self-energy. Phys. Rev. B 66, 014111 (2002). (10.1103/PhysRevB.66.014111) / Phys. Rev. B by AP Levanyuk (2002)
  39. Morozovska, A. N. et al. Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase. Phys. Rev. B 81, 195437 (2010). (10.1103/PhysRevB.81.195437) / Phys. Rev. B by AN Morozovska (2010)
  40. Rushchanskii, K. Z., Vysochanskii, Y. M. & Strauch, D. Ferroelectricity, nonlinear dynamics, and relaxation effects in monoclinic Sn2P2S6 . Phys. Rev. Lett. 99, 207601 (2007). (10.1103/PhysRevLett.99.207601) / Phys. Rev. Lett. by KZ Rushchanskii (2007)
  41. van Raaij, G. H. F., van Bemmel, K. J. H. & Janssen, T. Lattice models and Landau theory for type-II incommensurate crystals. Phys. Rev. B 62, 3751–3765 (2000). (10.1103/PhysRevB.62.3751) / Phys. Rev. B by GHF van Raaij (2000)
  42. Bak, P. Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys. 45, 587–629 (1982). (10.1088/0034-4885/45/6/001) / Rep. Prog. Phys. by P Bak (1982)
  43. Safran, S. A. Phase-diagrams for staged intercalation compounds. Phys. Rev. Lett. 44, 937–940 (1980). (10.1103/PhysRevLett.44.937) / Phys. Rev. Lett. by SA Safran (1980)
  44. Gusev, A. I., Rempel, A. A. & Magerl, A. J. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer: New York, 2001). (10.1007/978-3-662-04582-4)
  45. Aslanyan, T. A. & Levanyuk, A. P. Possibility of a non-commensurate phase near the α↔β transition point in quartz. JETP Lett. 28, 70–73 (1978). / JETP Lett. by TA Aslanyan (1978)
  46. Aslanyan, T. A., Levanyuk, A. P., Vallade, M. & Lajzerowicz, J. Various possibilities for formation of incommensurate superstructure near the α-β transition in quartz. J. Phys. C 16, 6705–6712 (1983). (10.1088/0022-3719/16/35/004) / J. Phys. C by TA Aslanyan (1983)
  47. Houchmanzadeh, B., Lajzerowicz, J. & Salje, E. Interfaces and ripple states in ferroelastic crystals - a simple model. Phase Transitions 38, 77–87 (1992). (10.1080/01411599208203464) / Phase Transitions by B Houchmanzadeh (1992)
  48. Houchmandzadeh, B., Lajzerowicz, J. & Salje, E. Relaxations near surfaces and interfaces for 1-st neighbor, 2-nd neighbor and 3-rd neighbor interactions-theory and applications to polytypism. J. Phys. Condens. Matter 4, 9779–9794 (1992). (10.1088/0953-8984/4/49/006) / J. Phys. Condens. Matter by B Houchmandzadeh (1992)
  49. Zubko, P., Catalan, G., Buckley, A., Welche, P. R. L. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007). (10.1103/PhysRevLett.99.167601) / Phys. Rev. Lett. by P Zubko (2007)
  50. Haun, M. J., Furman, E., Halemane, T. R. & Cross, L. E. Thermodynamic theory of the lead zirconate-titanate solid-solution system. 4. Tilting of the oxygen octahedra. Ferroelectrics 99, 55–62 (1989). (10.1080/00150198908221439) / Ferroelectrics by MJ Haun (1989)
  51. Haun, M. J., Furman, E., Jang, S. J. & Cross, L. E. Thermodynamic theory of the lead zirconate-titanate solid-solution system. 1. Phenomenology. Ferroelectrics 99, 13–25 (1989). (10.1080/00150198908221436) / Ferroelectrics by MJ Haun (1989)
  52. Tagantsev, A. K., Courtens, E. & Arzel, L. Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64, 224107 (2001). (10.1103/PhysRevB.64.224107) / Phys. Rev. B by AK Tagantsev (2001)
  53. Levin, I. et al. Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1−xNdxFeO3 (0.15≤×≤0.25). Phys. Rev. B 81, 020103 (2010). (10.1103/PhysRevB.81.020103) / Phys. Rev. B by I Levin (2010)
  54. Levin, I. et al. Displacive phase transitions and magnetic structures in Nd-substituted BiFeO3 . Chem. Mater. 23, 2166–2175 (2011). (10.1021/cm1036925) / Chem. Mater. by I Levin (2011)
  55. Troyanchuk, I. O. et al. Isothermal structural transitions, magnetization and large piezoelectric response in Bi1−xLaxFeO3 perovskites. Phys. Rev. B 83, 054109 (2011). (10.1103/PhysRevB.83.054109) / Phys. Rev. B by IO Troyanchuk (2011)
  56. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998). (10.1103/RevModPhys.70.1039) / Rev. Mod. Phys. by M Imada (1998)
  57. Dagotto, E. Nanoscale Phase Separation and Colossal Magnetoresistance: the Physics of Manganites and Related Compounds (Springer: New York, 2010).
  58. Kan, D., Cheng, C. J., Nagarajan, V. & Takeuchi, I. Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. J. Appl. Phys. 110, 014106 (2011). (10.1063/1.3605492) / J. Appl. Phys. by D Kan (2011)
  59. Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008). (10.1038/nmat2080) / Nat. Mater. by CL Jia (2008)
  60. Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007). (10.1038/nmat1808) / Nat. Mater. by CL Jia (2007)
Dates
Type When
Created 13 years, 4 months ago (April 10, 2012, 5:25 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:38 p.m.)
Indexed 3 weeks, 1 day ago (July 30, 2025, 11 a.m.)
Issued 13 years, 4 months ago (April 10, 2012)
Published 13 years, 4 months ago (April 10, 2012)
Published Online 13 years, 4 months ago (April 10, 2012)
Funders 0

None

@article{Borisevich_2012, title={Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction}, volume={3}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1778}, DOI={10.1038/ncomms1778}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Borisevich, A.Y. and Eliseev, E.A. and Morozovska, A.N. and Cheng, C.-J. and Lin, J.-Y. and Chu, Y.H. and Kan, D. and Takeuchi, I. and Nagarajan, V. and Kalinin, S.V.}, year={2012}, month=apr }