Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Ding, L., Zhang, Z., Liang, S., Pei, T., Wang, S., Li, Y., Zhou, W., Liu, J., & Peng, L.-M. (2012). CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nature Communications, 3(1).

Authors 9
  1. Li Ding (first)
  2. Zhiyong Zhang (additional)
  3. Shibo Liang (additional)
  4. Tian Pei (additional)
  5. Sheng Wang (additional)
  6. Yan Li (additional)
  7. Weiwei Zhou (additional)
  8. Jie Liu (additional)
  9. Lian-Mao Peng (additional)
References 33 Referenced 160
  1. Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2, 605–615 (2007). (10.1038/nnano.2007.300) / Nat. Nanotechnol. by P Avouris (2007)
  2. Rutherglen, C., Jain, D. & Burke, P. Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 4, 811–819 (2009). (10.1038/nnano.2009.355) / Nat. Nanotechnol. by C Rutherglen (2009)
  3. Burghard, M., Klauk, H. & Kern, K. Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 21, 2586–2600 (2009). (10.1002/adma.200803582) / Adv. Mater. by M Burghard (2009)
  4. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002). (10.1103/PhysRevLett.89.106801) / Phys. Rev. Lett. by S Heinze (2002)
  5. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.- M. & Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005). (10.1021/nl0508624) / Nano Lett. by Z Chen (2005)
  6. Perello, D. et al. Anomalous Schottky barriers and contact band-to-band tunnelling in carbon nanotube transistors. ACS Nano 4, 3103–3108 (2010). (10.1021/nn100328a) / ACS Nano by D Perello (2010)
  7. Zhou, X. J., Park, J. Y., Huang, S. M., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005). (10.1103/PhysRevLett.95.146805) / Phys. Rev. Lett. by XJ Zhou (2005)
  8. Franklin, A. D. & Chen, Z. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5, 858–862 (2010). (10.1038/nnano.2010.220) / Nat. Nanotechnol. by AD Franklin (2010)
  9. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistor. Nature 424, 654–657 (2003). (10.1038/nature01797) / Nature by A Javey (2003)
  10. Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 4, 447–450 (2004). (10.1021/nl035185x) / Nano Lett. by A Javey (2004)
  11. Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004). (10.1021/nl049222b) / Nano Lett. by A Javey (2004)
  12. Zhang, Z. Y. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7, 3603–3607 (2007). (10.1021/nl0717107) / Nano Lett. by ZY Zhang (2007)
  13. Zhang, Z. Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 8, 3696–3701 (2008). (10.1021/nl8018802) / Nano Lett. by ZY Zhang (2008)
  14. Ding, L. et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with sc-contacted devices. Nano Lett. 9, 4209–4214 (2009). (10.1021/nl9024243) / Nano Lett. by L Ding (2009)
  15. Ding, L. et al. A self-aligned u-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain induced barrier lowering. ACS Nano 5, 2512–2519 (2011). (10.1021/nn102091h) / ACS Nano by L Ding (2011)
  16. Wang, Z. X. et al. Yttrium oxide as a perfect high-κ gate dielectric for carbon-based electronics. Nano Lett. 10, 2024–2030 (2010). (10.1021/nl100022u) / Nano Lett. by ZX Wang (2010)
  17. Javey, A. et al. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002). (10.1021/nl025647r) / Nano Lett. by A Javey (2002)
  18. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001). (10.1021/nl015606f) / Nano Lett. by V Derycke (2001)
  19. Bachtold, A. et al. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001). (10.1126/science.1065824) / Science by A Bachtold (2001)
  20. Zhang, Z. Y. et al. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 3, 3781–3187 (2009). (10.1021/nn901079p) / ACS Nano by ZY Zhang (2009)
  21. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006). (10.1126/science.1122797) / Science by Z Chen (2006)
  22. Ryu, K. M. et al. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 9, 189–197 (2009). (10.1021/nl802756u) / Nano Lett. by KM Ryu (2009)
  23. Sun, D. M. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 6, 156–161 (2011). (10.1038/nnano.2011.1) / Nat. Nanotechnol. by DM Sun (2011)
  24. Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008). (10.1038/nature07110) / Nature by Q Cao (2008)
  25. Yu, W. J. et al. Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors. Nano Lett. 9, 1401–1405 (2009). (10.1021/nl803066v) / Nano Lett. by WJ Yu (2009)
  26. Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011). (10.1038/nature09749) / Nature by H Yan (2011)
  27. Rabaey, J. M., Chandrakasan, A. & Nikolic, B. Digital Integrated Circuits (Prentice Hall, 2003).
  28. Weste, N. H. E. & Harris, D. CMOS VLSI Design: A Circuits and System Perspective 3rd edn, (Addison Wesley, 2004).
  29. Zimmermann, R. & Fichtner, W. Low-power logic styles: CMOS versus pass-transistor logic. IEEE J. Solid-State Circuits 32, 1079–1090 (1997). (10.1109/4.597298) / IEEE J. Solid-State Circuits by R Zimmermann (1997)
  30. Chao, R. et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4, 153–158 (2005). (10.1109/TNANO.2004.842073) / IEEE Trans. Nanotechnol. by R Chao (2005)
  31. Sze, S. Physics of Semiconductor Devices (Wiley, 1981).
  32. Guo, J. et al. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans. Nanotechnol. 4, 715–721 (2005). (10.1109/TNANO.2005.858601) / IEEE Trans. Nanotechnol. by J Guo (2005)
  33. Zhou, W. W. et al. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6, 2987–2990 (2006). (10.1021/nl061871v) / Nano Lett. by WW Zhou (2006)
Dates
Type When
Created 13 years, 6 months ago (Feb. 14, 2012, 4:44 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:44 p.m.)
Indexed 5 days, 10 hours ago (Aug. 27, 2025, 12:35 p.m.)
Issued 13 years, 6 months ago (Feb. 14, 2012)
Published 13 years, 6 months ago (Feb. 14, 2012)
Published Online 13 years, 6 months ago (Feb. 14, 2012)
Funders 0

None

@article{Ding_2012, title={CMOS-based carbon nanotube pass-transistor logic integrated circuits}, volume={3}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1682}, DOI={10.1038/ncomms1682}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ding, Li and Zhang, Zhiyong and Liang, Shibo and Pei, Tian and Wang, Sheng and Li, Yan and Zhou, Weiwei and Liu, Jie and Peng, Lian-Mao}, year={2012}, month=feb }