Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractVan der Waals (vdW) interaction between two-dimensional crystals (2D) can trap substances in high pressurized (of order 1 GPa) on nanobubbles. Increasing the adhesion between the 2D crystals further enhances the pressure and can lead to a phase transition of the trapped material. We found that the shape of the nanobubble can depend critically on the properties of the trapped substance. In the absence of any residual strain in the top 2D crystal, flat nanobubbles can be formed by trapped long hydrocarbons (that is, hexadecane). For large nanobubbles with radius 130 nm, our atomic force microscopy measurements show nanobubbles filled with hydrocarbons (water) have a cylindrical symmetry (asymmetric) shape which is in good agreement with our molecular dynamics simulations. This study provides insights into the effects of the specific material and the vdW pressure on the microscopic details of graphene bubbles.

Authors 5
  1. H. Ghorbanfekr-Kalashami (first)
  2. K. S. Vasu (additional)
  3. R. R. Nair (additional)
  4. François M. Peeters (additional)
  5. M. Neek-Amal (additional)
References 43 Referenced 77
  1. Stolyarova, E. et al. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 9, 332–337 (2009). (10.1021/nl803087x) / Nano Lett. by E Stolyarova (2009)
  2. Zamborlini, G. et al. Nanobubbles at GPa pressure under graphene. Nano Lett. 15, 6162–6169 (2015). (10.1021/acs.nanolett.5b02475) / Nano Lett. by G Zamborlini (2015)
  3. Lu, J., Neto, A. C. & Loh, K. P. Transforming moiré blisters into geometric graphene nano-bubbles. Nat. Commun. 3, 823–828 (2012). (10.1038/ncomms1818) / Nat. Commun. by J Lu (2012)
  4. Xu, K., Cao, P. & Heath, J. R. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329, 1188–1191 (2010). (10.1126/science.1192907) / Science by K Xu (2010)
  5. Lim, C.H.Y.X. et al. A hydrothermal anvil made of graphene nanobubbles on diamond. Nat. Commun. 4, 1556–1563 (2013). (10.1038/ncomms2579) / Nat. Commun. by CHYX Lim (2013)
  6. Georgiou, T. et al. Graphene bubbles with controllable curvature. Appl. Phys. Lett. 99, 093103–093105 (2011). (10.1063/1.3631632) / Appl. Phys. Lett. by T Georgiou (2011)
  7. Lim, C.H.Y.X., Nesladek, M. & Loh, K. P. Observing high-pressure chemistry in graphene bubbles. Angew Chem. Int. Ed. Engl. 53, 215–219 (2014). (10.1002/anie.201308682) / Angew Chem. Int. Ed. Engl. by CHYX Lim (2014)
  8. Vasu, K. S. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168–12175 (2016). (10.1038/ncomms12168) / Nat. Commun. by KS Vasu (2016)
  9. Mu, R. et al. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 51, 4856–4859 (2012). (10.1002/anie.201200413) / Angew. Chem. Int. Ed. by R Mu (2012)
  10. Yue, K., Gao, W., Huang, R. & Liechti, K. M. Analytical methods for the mechanics of graphene bubbles. J. Appl. Phys. 112, 083512–083519 (2012). (10.1063/1.4759146) / J. Appl. Phys. by K Yue (2012)
  11. Wang, P., Gao, W., Cao, Z., Liechti, K. M. & Huang, R. Numerical analysis of circular graphene bubbles. J. Appl. Mech. 80, 040905–040913 (2013). (10.1115/1.4024169) / J. Appl. Mech. by P Wang (2013)
  12. Lu, Z. & Dunn, M. L. Van der Waals adhesion of graphene membranes. J. Appl. Phys. 107, 044301–044305 (2010). (10.1063/1.3270425) / J. Appl. Phys. by Z Lu (2010)
  13. Khestanova, E., Guinea, F., Fumagalli, L., Geim, A. & Grigorieva, I. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587–12596 (2016). (10.1038/ncomms12587) / Nat. Commun. by E Khestanova (2016)
  14. Levy, N. et al. Strain-induced pseudomagnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010). (10.1126/science.1191700) / Science by N Levy (2010)
  15. Whalley, E. Chemical reactions in solution under high pressure. Ber. Bunsenges. Phys. Chem. 70, 958–968 (1966). (10.1002/bbpc.19660700908) / Ber. Bunsenges. Phys. Chem. by E Whalley (1966)
  16. Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015). (10.1038/nature14295) / Nature by G Algara-Siller (2015)
  17. Sobrino Fernandez Mario, M., Neek-Amal, M. & Peeters, F. AA-stacked bilayer square ice between graphene layers. Phys. Rev. B 92, 245428–245432 (2015). (10.1103/PhysRevB.92.245428) / Phys. Rev. B by M Sobrino Fernandez Mario (2015)
  18. Soper, A. & Ricci, M. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000). (10.1103/PhysRevLett.84.2881) / Phys. Rev. Lett. by A Soper (2000)
  19. Kumar, P., Buldyrev, S. V., Starr, F. W., Giovambattista, N. & Stanley, H. E. Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys. Rev. E 72, 051503–051517 (2005). (10.1103/PhysRevE.72.051503) / Phys. Rev. E by P Kumar (2005)
  20. Zhou, W. et al. The observation of square ice in graphene questioned. Nature 519, 443–445 (2015). (10.1038/nature14295) / Nature by W Zhou (2015)
  21. Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502–235506 (2012). (10.1103/PhysRevLett.108.235502) / Phys. Rev. Lett. by T Björkman (2012)
  22. Neek-Amal, M. & Peeters, F. Strain-engineered graphene through a nanostructured substrate. I. Deformations. Phys. Rev. B 85, 195445–195455 (2012). (10.1103/PhysRevB.85.195445) / Phys. Rev. B by M Neek-Amal (2012)
  23. Zakharchenko, K., Los, J., Katsnelson, M. & Fasolino, A. Atomistic simulations of structural and thermodynamic properties of bilayer graphene. Phys. Rev. B 81, 235439–235444 (2010). (10.1103/PhysRevB.81.235439) / Phys. Rev. B by K Zakharchenko (2010)
  24. Qiu, H., Zeng, X. C. & Guo, W. Water in inhomogeneous nanoconfinement: coexistence of multilayered liquid and transition to ice nanoribbons. ACS Nano 9, 9877–9884 (2015). (10.1021/acsnano.5b04947) / ACS Nano by H Qiu (2015)
  25. Tsai, D. The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979). (10.1063/1.437577) / J. Chem. Phys. by D Tsai (1979)
  26. Hodgdon, J. A. & Stillinger, F. H. Inherent structures in the potential energy landscape of solid 4He. J. Chem. Phys. 102, 457–464 (1995). (10.1063/1.469423) / J. Chem. Phys. by JA Hodgdon (1995)
  27. Mao, H. et al. High-pressure phase diagram and equation of state of solid helium from single-crystal X-ray diffraction to 23.3 GPa. Phys. Rev. Lett. 60, 2649 (1988). (10.1103/PhysRevLett.60.2649) / Phys. Rev. Lett. by H Mao (1988)
  28. Polian, A. & Grimsditch, M. Elastic properties and density of helium up to 20 GPa. Europhys. Lett. 2, 849–855 (1986). (10.1209/0295-5075/2/11/006) / Europhys. Lett. by A Polian (1986)
  29. Kondrin, M., Pronin, A. & Brazhkin, V. Crystallization and vitrification of ethanol at high pressures. J. Chem. Phys. 141, 194504–194509 (2014). (10.1063/1.4902059) / J. Chem. Phys. by M Kondrin (2014)
  30. Rafii-Tabar, H. Computational modeling of thermo-mechanical and transport properties of carbon nanotubes. Phys. Rep. 4, 235–452 (2004). (10.1016/j.physrep.2003.10.012) / Phys. Rep. by H Rafii-Tabar (2004)
  31. Brodholt, J. P. Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures. Chem. Geol. 151, 11–19 (1998). (10.1016/S0009-2541(98)00066-7) / Chem. Geol. by JP Brodholt (1998)
  32. Mi, Z. Strength, elasticity and phase transition study on NaCl and MgO-NaCl mixture to mantle pressures. (PhD thesis, Univ. Western Ontario London, 1, 2013).
  33. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012). (10.1038/nmat3386) / Nat. Mater. by SJ Haigh (2012)
  34. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014). (10.1021/nl5006542) / Nano Lett. by AV Kretinin (2014)
  35. Vasu, K. S. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168–12173 (2016). (10.1038/ncomms12168) / Nat. Commun. by KS Vasu (2016)
  36. Van Duin, A. C., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001). (10.1021/jp004368u) / J. Phys. Chem. A by AC Van Duin (2001)
  37. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). (10.1006/jcph.1995.1039) / J. Comput. Phys. by S Plimpton (1995)
  38. Jorgensen, W. L., Madura, J. D. & Swenson, C. J. Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638–6646 (1984). (10.1021/ja00334a030) / J. Am. Chem. Soc. by WL Jorgensen (1984)
  39. Sesé, G. & Palomar, R. Molecular dynamics studies of supercooled ethanol. J. Chem. Phys. 114, 9975–9981 (2001). (10.1063/1.1371518) / J. Chem. Phys. by G Sesé (2001)
  40. Kholmurodov, K. et al. Molecular dynamics simulation of the interaction of ethanol-water mixture with a Pt surface. Nat. Sci. 3, 1011–1021 (2011). / Nat. Sci. by K Kholmurodov (2011)
  41. Stuart, S. J., Tutein, A. B. & Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Phys. Chem. A 112, 6472–6486 (2000). (10.1063/1.481208) / J. Phys. Chem. A by SJ Stuart (2000)
  42. Zhou, X. & Doty, F. P. Embedded-ion method: an analytical energy-conserving charge-transfer interatomic potential and its application to the La-Br system. Phys. Rev. B 78, 224307–22318 (2008). (10.1103/PhysRevB.78.224307) / Phys. Rev. B by X Zhou (2008)
  43. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). (10.1016/0263-7855(96)00018-5) / J. Mol. Graph. by W Humphrey (1996)
Dates
Type When
Created 8 years, 2 months ago (June 16, 2017, 7:20 a.m.)
Deposited 1 year, 2 months ago (June 24, 2024, 4:27 p.m.)
Indexed 3 weeks, 5 days ago (July 28, 2025, 5:42 p.m.)
Issued 8 years, 2 months ago (June 16, 2017)
Published 8 years, 2 months ago (June 16, 2017)
Published Online 8 years, 2 months ago (June 16, 2017)
Funders 0

None

@article{Ghorbanfekr_Kalashami_2017, title={Dependence of the shape of graphene nanobubbles on trapped substance}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms15844}, DOI={10.1038/ncomms15844}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ghorbanfekr-Kalashami, H. and Vasu, K. S. and Nair, R. R. and Peeters, François M. and Neek-Amal, M.}, year={2017}, month=jun }