Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe properties of ferroelectric domain walls can significantly differ from those of their parent material. Elucidating their internal structure is essential for the design of advanced devices exploiting nanoscale ferroicity and such localized functional properties. Here, we probe the internal structure of 180° ferroelectric domain walls in lead zirconate titanate (PZT) thin films and lithium tantalate bulk crystals by means of second-harmonic generation microscopy. In both systems, we detect a pronounced second-harmonic signal at the walls. Local polarimetry analysis of this signal combined with numerical modelling reveals the existence of a planar polarization within the walls, with Néel and Bloch-like configurations in PZT and lithium tantalate, respectively. Moreover, we find domain wall chirality reversal at line defects crossing lithium tantalate crystals. Our results demonstrate a clear deviation from the ideal Ising configuration that is traditionally expected in uniaxial ferroelectrics, corroborating recent theoretical predictions of a more complex, often chiral structure.

Bibliography

Cherifi-Hertel, S., Bulou, H., Hertel, R., Taupier, G., Dorkenoo, K. D., Andreas, C., Guyonnet, J., Gaponenko, I., Gallo, K., & Paruch, P. (2017). Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nature Communications, 8(1).

Authors 10
  1. Salia Cherifi-Hertel (first)
  2. Hervé Bulou (additional)
  3. Riccardo Hertel (additional)
  4. Grégory Taupier (additional)
  5. Kokou Dodzi Dorkenoo (additional)
  6. Christian Andreas (additional)
  7. Jill Guyonnet (additional)
  8. Iaroslav Gaponenko (additional)
  9. Katia Gallo (additional)
  10. Patrycja Paruch (additional)
References 61 Referenced 135
  1. Yokota, H. et al. Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope. Phys. Rev. B 89, 144109 (2014). (10.1103/PhysRevB.89.144109) / Phys. Rev. B by H Yokota (2014)
  2. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). (10.1038/nmat2373) / Nat. Mater. by J Seidel (2009)
  3. Kim, Y., Alexe, M. & Salje, E. K. H. Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x . Appl. Phys. Lett. 96, 032904 (2010). (10.1063/1.3292587) / Appl. Phys. Lett. by Y Kim (2010)
  4. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011). (10.1002/adma.201102254) / Adv. Mater. by J Guyonnet (2011)
  5. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012). (10.1002/adfm.201201174) / Adv. Funct. Mater. by M Schröder (2012)
  6. Daraktchiev, M., Catalan, G. & Scott, J. F. Landau theory of domain wall magnetoelectricity. Phys. Rev. B 81, 224118 (2010). (10.1103/PhysRevB.81.224118) / Phys. Rev. B by M Daraktchiev (2010)
  7. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010). (10.1038/nnano.2009.451) / Nat. Nanotechnol. by SY Yang (2010)
  8. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010). (10.1002/cphc.200900943) / ChemPhysChem by EKH Salje (2010)
  9. Allwood, D. A. Magnetic domain-wall logic. Science 309, 1688–1692 (2005). (10.1126/science.1108813) / Science by DA Allwood (2005)
  10. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008). (10.1126/science.1145799) / Science by SSP Parkin (2008)
  11. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012). (10.1103/RevModPhys.84.119) / Rev. Mod. Phys. by G Catalan (2012)
  12. Béa, H. & Paruch, P. A way forward along domain walls. Nat. Mater. 8, 255–255 (2009). (10.1038/nmat2417) / Nat. Mater. by H Béa (2009)
  13. Janovec, V. & Přívratská, J. in International Tables for Crystallography Vol. D, 449–505International Union of Crystallography (2006). (10.1107/97809553602060000645)
  14. Přívratská, J. Possible Appearance of spontaneous polarization and/or magnetization in domain walls associated with non-magnetic and non-ferroelectric domain pairs. Ferroelectrics 353, 116–123 (2007). (10.1080/00150190701368067) / Ferroelectrics by J Přívratská (2007)
  15. Tolédano, P., Guennou, M. & Kreisel, J. Order-parameter symmetries of domain walls in ferroelectrics and ferroelastics. Phys. Rev. B 89, 134104 (2014). (10.1103/PhysRevB.89.134104) / Phys. Rev. B by P Tolédano (2014)
  16. Lajzerowicz, J. & Niez, J. J. Phase transition in a domain wall. J. Phys. Lett. 40, 165–169 (1979). (10.1051/jphyslet:01979004007016500) / J. Phys. Lett. by J Lajzerowicz (1979)
  17. Tagantsev, A. K., Courtens, E. & Arzel, L. Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys. Rev. B 64, 224107 (2001). (10.1103/PhysRevB.64.224107) / Phys. Rev. B by AK Tagantsev (2001)
  18. Goncalves-Ferreira, L., Redfern, S. A. T., Artacho, E. & Salje, E. K. H. Ferrielectric twin walls in CaTiO3 . Phys. Rev. Lett. 101, 097602 (2008). (10.1103/PhysRevLett.101.097602) / Phys. Rev. Lett. by L Goncalves-Ferreira (2008)
  19. Lee, D. et al. Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls. Phys. Rev. B 80, 060102 (2009). (10.1103/PhysRevB.80.060102) / Phys. Rev. B by D Lee (2009)
  20. Lee, D., Xu, H., Dierolf, V., Gopalan, V. & Phillpot, S. R. Structure and energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulations. Phys. Rev. B 82, 14104 (2010). (10.1103/PhysRevB.82.014104) / Phys. Rev. B by D Lee (2010)
  21. Behera, R. K. et al. Structure and energetics of 180° domain walls in PbTiO3 by density functional theory. J. Phys. Condens. Matter 23, 175902 (2011). (10.1088/0953-8984/23/17/175902) / J. Phys. Condens. Matter by RK Behera (2011)
  22. Stepkova, V., Marton, P. & Hlinka, J. Stress-induced phase transition in ferroelectric domain walls of BaTiO3 . J. Phys. Condens. Matter 24, 212201 (2012). (10.1088/0953-8984/24/21/212201) / J. Phys. Condens. Matter by V Stepkova (2012)
  23. Taherinejad, M., Vanderbilt, D., Marton, P., Stepkova, V. & Hlinka, J. Bloch-type domain walls in rhombohedral BaTiO3 . Phys. Rev. B 86, 155138 (2012). (10.1103/PhysRevB.86.155138) / Phys. Rev. B by M Taherinejad (2012)
  24. Eliseev, E. A. et al. Conductivity of twin-domain-wall/surface junctions in ferroelastics: interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Phys. Rev. B 86, 085416 (2012). (10.1103/PhysRevB.86.085416) / Phys. Rev. B by EA Eliseev (2012)
  25. Eliseev, E. A. et al. Structural phase transitions and electronic phenomena at 180-degree domain walls in rhombohedral BaTiO3 . Phys. Rev. B 87, 054111 (2013). (10.1103/PhysRevB.87.054111) / Phys. Rev. B by EA Eliseev (2013)
  26. Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014). (10.1103/PhysRevLett.112.247603) / Phys. Rev. Lett. by JC Wojdeł (2014)
  27. Jia, C.-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008). (10.1038/nmat2080) / Nat. Mater. by C-L Jia (2008)
  28. Li, L. et al. Atomic scale structure changes induced by charged domain walls in ferroelectric materials. Nano Lett. 13, 5218–5223 (2013). (10.1021/nl402651r) / Nano Lett. by L Li (2013)
  29. Gruverman, A., Auciello, O. & Tokumoto, H. Scanning force microscopy for the study of domain structure in ferroelectric thin films. J. Vac. Sci. Technol. B 14, 602–605 (1996). (10.1116/1.589143) / J. Vac. Sci. Technol. B by A Gruverman (1996)
  30. Eng, L. M., Güntherodt, H.-J., Schneider, G. a., Köpke, U. & Muñoz Saldaña, J. Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium–titanate ceramics. Appl. Phys. Lett. 74, 233–235 (1999). (10.1063/1.123266) / Appl. Phys. Lett. by LM Eng (1999)
  31. Guyonnet, J., Béa, H. & Paruch, P. Lateral piezoelectric response across ferroelectric domain walls in thin films. J. Appl. Phys. 108, 042002 (2010). (10.1063/1.3474953) / J. Appl. Phys. by J Guyonnet (2010)
  32. Lei, S. et al. Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall. Phys. Rev. B 86, 134115 (2012). (10.1103/PhysRevB.86.134115) / Phys. Rev. B by S Lei (2012)
  33. Uesu, Y., Kurimura, S. & Yamamoto, Y. Optical second harmonic images of 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3 . Appl. Phys. Lett. 66, 2165–2167 (1995). (10.1063/1.113934) / Appl. Phys. Lett. by Y Uesu (1995)
  34. Fiebig, M., Fröhlich, D., Lottermoser, T. & Maat, M. Probing of ferroelectric surface and bulk domains in RMnO3 (R=Y, Ho) by second harmonic generation. Phys. Rev. B 66, 144102 (2002). (10.1103/PhysRevB.66.144102) / Phys. Rev. B by M Fiebig (2002)
  35. Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011). (10.1111/j.1551-2916.2011.04740.x) / J. Am. Ceram. Soc. by SA Denev (2011)
  36. Kämpfe, T. et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Phys. Rev. B 89, 035314 (2014). (10.1103/PhysRevB.89.035314) / Phys. Rev. B by T Kämpfe (2014)
  37. Dong, Z. et al. Second-harmonic generation from sub-5 nm gaps by directed self-assembly of nanoparticles onto template-stripped gold substrates. Nano Lett. 15, 5976–5981 (2015). (10.1021/acs.nanolett.5b02109) / Nano Lett. by Z Dong (2015)
  38. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005). (10.1364/JOSAB.22.000096) / J. Opt. Soc. Am. B by M Fiebig (2005)
  39. Slonczewski, J. C. Theory of Bloch-line and Bloch-wall motion. J. Appl. Phys. 45, 2705–2715 (1974). (10.1063/1.1663654) / J. Appl. Phys. by JC Slonczewski (1974)
  40. Scrymgeour, D., Gopalan, V., Itagi, A., Saxena, A. & Swart, P. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: lithium niobate and lithium tantalate. Phys. Rev. B 71, 184110 (2005). (10.1103/PhysRevB.71.184110) / Phys. Rev. B by D Scrymgeour (2005)
  41. Morozovska, a. N. Domain wall conduction in ferroelectrics. Ferroelectrics 438, 3–19 (2012). (10.1080/00150193.2012.744258) / Ferroelectrics by aN Morozovska (2012)
  42. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Maksymovych, P. & Kalinin, S. V. Domain wall conduction in multiaxial ferroelectrics. Phys. Rev. B 85, 045312 (2012). (10.1103/PhysRevB.85.045312) / Phys. Rev. B by EA Eliseev (2012)
  43. Bozhevolnyi, S. I., Pedersen, K., Skettrup, T., Zhang, X. & Belmonte, M. Far- and near-field second-harmonic imaging of ferroelectric domain walls. Opt. Commun. 152, 221–224 (1998). (10.1016/S0030-4018(98)00176-X) / Opt. Commun. by SI Bozhevolnyi (1998)
  44. Deng, X. & Chen, X. Domain wall characterization in ferroelectrics by using localized nonlinearities. Opt. Express 18, 15597–15602 (2010). (10.1364/OE.18.015597) / Opt. Express by X Deng (2010)
  45. Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010). (10.1364/OE.18.016539) / Opt. Express by Y Sheng (2010)
  46. Fragemann, A., Pasiskevicius, V. & Laurell, F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4 . Appl. Phys. Lett. 85, 375–377 (2004). (10.1063/1.1775031) / Appl. Phys. Lett. by A Fragemann (2004)
  47. Kaneshiro, J., Uesu, Y. & Fukui, T. Visibility of inverted domain structures using the second harmonic generation microscope: Comparison of interference and non-interference cases. J. Opt. Soc. Am. B 27, 888–894 (2010). (10.1364/JOSAB.27.000888) / J. Opt. Soc. Am. B by J Kaneshiro (2010)
  48. Flörsheimer, M. et al. Second-harmonic imaging of ferroelectric domains in LiNbO3 with micron resolution in lateral and axial directions. Appl. Phys. B 67, 593–599 (1998). (10.1007/s003400050552) / Appl. Phys. B by M Flörsheimer (1998)
  49. Bozhevolnyi, S. I. et al. Second-harmonic imaging of ferroelectric domain walls. Appl. Phys. Lett. 73, 1814–1816 (1998). (10.1063/1.122291) / Appl. Phys. Lett. by SI Bozhevolnyi (1998)
  50. Newnham, R. E. Properties of Materials Oxford University Press (2005).
  51. Yudin, P. V., Tagantsev, A. K., Eliseev, E. A., Morozovska, A. N. & Setter, N. Bichiral structure of ferroelectric domain walls driven by flexoelectricity. Phys. Rev. B 86, 134102 (2012). (10.1103/PhysRevB.86.134102) / Phys. Rev. B by PV Yudin (2012)
  52. Houchmandzadeh, B., Lajzerowicz, J. & Salje, E. Order parameter coupling and chirality of domain walls. J. Phys. Condens. Matter 3, 5163–5169 (1991). (10.1088/0953-8984/3/27/009) / J. Phys. Condens. Matter by B Houchmandzadeh (1991)
  53. Salje, E. K. H. & Scott, J. F. Ferroelectric Bloch-line switching: a paradigm for memory devices? Appl. Phys. Lett. 105, 252904 (2014). (10.1063/1.4905001) / Appl. Phys. Lett. by EKH Salje (2014)
  54. Stepkova, V., Marton, P. & Hlinka, J. Ising lines: natural topological defects within ferroelectric Bloch walls. Phys. Rev. B 92, 94106 (2015). (10.1103/PhysRevB.92.094106) / Phys. Rev. B by V Stepkova (2015)
  55. Morozovska, A. N., Eliseev, E. A., Glinchuk, M. D., Chen, L. Q. & Gopalan, V. Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction. Phys. Rev. B 85, 094107 (2012). (10.1103/PhysRevB.85.094107) / Phys. Rev. B by AN Morozovska (2012)
  56. Gu, Y. et al. Flexoelectricity and ferroelectric domain wall structures: phase-field modeling and DFT calculations. Phys. Rev. B 89, 174111 (2014). (10.1103/PhysRevB.89.174111) / Phys. Rev. B by Y Gu (2014)
  57. Gariglio, S., Stucki, N., Triscone, J.-M. & Triscone, G. Strain relaxation and critical temperature in epitaxial ferroelectric Pb(Zr0.20Ti0.80)O3 thin films. Appl. Phys. Lett. 90, 202905 (2007). (10.1063/1.2740171) / Appl. Phys. Lett. by S Gariglio (2007)
  58. Gallo, K., Gawith, C. B. E. & Smith, P. G. R. Bidimensional hexagonal poling of LiNbO3 for nonlinear photonic crystals and quasi-crystals. Ferroelectrics 340, 69–74 (2006). (10.1080/00150190600888942) / Ferroelectrics by K Gallo (2006)
  59. Shur, V. Y., Lobov, A. I., Shur, A. G., Rumyantsev, E. L. & Gallo, K. Shape evolution of isolated micro-domains in lithium niobate. Ferroelectrics 360, 111–119 (2007). (10.1080/00150190701517580) / Ferroelectrics by VY Shur (2007)
  60. Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J. Phys. Condens. Matter 21, 215901 (2009). (10.1088/0953-8984/21/21/215901) / J. Phys. Condens. Matter by P Hermet (2009)
  61. Dolev, I. et al. Linear and nonlinear optical properties of MgO:LiTaO3 . Appl. Phys. B 96, 423–432 (2009). (10.1007/s00340-009-3502-3) / Appl. Phys. B by I Dolev (2009)
Dates
Type When
Created 8 years, 2 months ago (June 8, 2017, 7:18 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 8:14 p.m.)
Indexed 5 days, 19 hours ago (Aug. 28, 2025, 8:01 a.m.)
Issued 8 years, 2 months ago (June 8, 2017)
Published 8 years, 2 months ago (June 8, 2017)
Published Online 8 years, 2 months ago (June 8, 2017)
Funders 0

None

@article{Cherifi_Hertel_2017, title={Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms15768}, DOI={10.1038/ncomms15768}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Cherifi-Hertel, Salia and Bulou, Hervé and Hertel, Riccardo and Taupier, Grégory and Dorkenoo, Kokou Dodzi and Andreas, Christian and Guyonnet, Jill and Gaponenko, Iaroslav and Gallo, Katia and Paruch, Patrycja}, year={2017}, month=jun }