Abstract
AbstractMagnetic skyrmions are quasiparticle-like textures which are topologically different from other states. Their discovery in systems with broken inversion symmetry sparked the search for materials containing such magnetic phase at room temperature. Their topological properties combined with the chirality-related spin–orbit torques make them interesting objects to control the magnetization at nanoscale. Here we show that a pair of coupled skyrmions of opposite chiralities can be stabilized in a symmetric magnetic bilayer system by combining Dzyaloshinskii–Moriya interaction (DMI) and dipolar coupling effects. This opens a path for skyrmion stabilization with lower DMI. We demonstrate in a device with asymmetric electrodes that such skyrmions can be independently written and shifted by electric current at large velocities. The skyrmionic nature of the observed quasiparticles is confirmed by the gyrotropic force. These results set the ground for emerging spintronic technologies where issues concerning skyrmion stability, nucleation and propagation are paramount.
Authors
10
- A. Hrabec (first)
- J. Sampaio (additional)
- M. Belmeguenai (additional)
- I. Gross (additional)
- R. Weil (additional)
- S. M. Chérif (additional)
- A. Stashkevich (additional)
- V. Jacques (additional)
- A. Thiaville (additional)
- S. Rohart (additional)
References
49
Referenced
280
-
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
(
10.1126/science.1166767
) / Science by S Mühlbauer (2009) - Bogdanov, A. & Yablonskii, D. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101 (1989). / Sov. Phys. JETP by A Bogdanov (1989)
-
Rößler, U., Bogdanov, A. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
(
10.1038/nature05056
) / Nature by U Rößler (2006) -
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
(
10.1038/nphys2045
) / Nat. Phys. by S Heinze (2011) -
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
(
10.1038/nnano.2013.29
) / Nat. Nanotechnol. by A Fert (2013) -
Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).
(
10.1038/nnano.2013.210
) / Nat. Nanotechnol. by J Sampaio (2013) -
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).
(
10.1126/science.1240573
) / Science by N Romming (2013) -
Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).
(
10.1126/science.aaa1442
) / Science by W Jiang (2015) -
Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).
(
10.1038/nnano.2015.315
) / Nat. Nanotechnol. by O Boulle (2016) -
Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).
(
10.1038/nnano.2015.313
) / Nat. Nanotechnol. by C Moreau-Luchaire (2016) -
Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).
(
10.1038/nmat4593
) / Nat. Mater. by S Woo (2016) - Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 446, 316–319 (2011). / Nature by IM Miron (2011)
-
Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
(
10.1126/science.1218197
) / Science by LQ Liu (2012) -
Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. S. P. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).
(
10.1038/nnano.2013.102
) / Nat. Nanotechnol. by K-S Ryu (2013) -
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
(
10.1038/nmat3675
) / Nat. Mater. by S Emori (2013) - Dzyaloshinskii, I.-E. Theory of helicoidal structures in antiferromagnets. III. Sov. Phys. JETP 20, 665 (1965). / Sov. Phys. JETP by I-E Dzyaloshinskii (1965)
-
Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).
(
10.1038/nature05802
) / Nature by M Bode (2007) -
Heide, M., Bihlmayer, G. & Blügel, S. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W (110). Phys. Rev. B 78, 140403 (2008).
(
10.1103/PhysRevB.78.140403
) / Phys. Rev. B by M Heide (2008) -
Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).
(
10.1103/PhysRevB.90.020402
) / Phys. Rev. B by A Hrabec (2014) -
Rohart, S. & Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184422 (2013).
(
10.1103/PhysRevB.88.184422
) / Phys. Rev. B by S Rohart (2013) -
Bellec, A., Rohart, S., Labrune, M., Miltat, J. & Thiaville, A. Domain wall structure in magnetic bilayers with perpendicular anisotropy. Europhys. Lett. 91, 17009 (2010).
(
10.1209/0295-5075/91/17009
) / Europhys. Lett. by A Bellec (2010) -
Bloemen, P., De Jonge, W. & Den Broeder, F. Magnetic anisotropies in Co/Ni (111) multilayers. J. Appl. Phys. 72, 4840–4844 (1992).
(
10.1063/1.352048
) / J. Appl. Phys. by P Bloemen (1992) -
Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013).
(
10.1038/ncomms3671
) / Nat. Commun. by G Chen (2013) -
Nguyen, M.-H., Ralph, D. & Buhrman, R. Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. Phys. Rev. Lett. 116, 126601 (2016).
(
10.1103/PhysRevLett.116.126601
) / Phys. Rev. Lett. by M-H Nguyen (2016) -
Ryu, K.-S., Yang, S.-H., Thomas, L. & Parkin, S. S. P. Chiral spin torque arising from proximity-induced magnetization. Nat. Commun. 5, 3910 (2014).
(
10.1038/ncomms4910
) / Nat. Commun. by K-S Ryu (2014) -
Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii-Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).
(
10.1103/PhysRevLett.115.267210
) / Phys. Rev. Lett. by H Yang (2015) -
Nandy, A. K., Kiselev, N. S. & Blügel, S. Interlayer exchange coupling: a general scheme turning chiral magnets into magnetic multilayers carrying atomic-scale skyrmions. Phys. Rev. Lett. 116, 177202 (2016).
(
10.1103/PhysRevLett.116.177202
) / Phys. Rev. Lett. by AK Nandy (2016) -
Chen, G. et al. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).
(
10.1063/1.4922726
) / Appl. Phys. Lett. by G Chen (2015) -
Grolier, V. et al. Unambiguous evidence of oscillatory magnetic coupling between Co layers in ultrahigh vacuum grown Co/Au (111)/Co trilayers. Phys. Rev. Lett. 71, 3023–3026 (1993).
(
10.1103/PhysRevLett.71.3023
) / Phys. Rev. Lett. by V Grolier (1993) - Hubert, A. & Schäfer, R. Magnetic Domains - The Analysis of Magnetic Microstructures Springer (1998).
-
Thiaville, A., Rohart, S., Jué, E., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).
(
10.1209/0295-5075/100/57002
) / Europhys. Lett. by A Thiaville (2012) -
Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).
(
10.1038/ncomms7733
) / Nat. Commun. by J-P Tetienne (2015) - Kooy, C. & Enz, U. Experimental and theoretical study of the domain configuration in thin layers of BaFe12O19 . Philips Res. Rep. 15, 7–29 (1960). / Philips Res. Rep. by C Kooy (1960)
-
Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).
(
10.1038/nnano.2013.176
) / Nat. Nanotechnol. by J Iwasaki (2013) -
Everschor-Sitte, K., Sitte, M., Valet, T., Sinova, J. & Abanov, A. Skyrmion production on demand by homogeneous dc currents, Preprint at http://arxiv.org/abs/1610.08313 (2016).
(
10.1088/1367-2630/aa8569
) -
Heinonen, O., Jiang, W., Somaily, H., te Velthuis, S. G. & Hoffmann, A. Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents. Phys. Rev. B 93, 094407 (2016).
(
10.1103/PhysRevB.93.094407
) / Phys. Rev. B by O Heinonen (2016) -
Gorchon, J. et al. Stochastic current-induced magnetization switching in a single semiconducting ferromagnetic layer. Phys. Rev. Lett. 112, 026601 (2014).
(
10.1103/PhysRevLett.112.026601
) / Phys. Rev. Lett. by J Gorchon (2014) -
Kim, K.-J. et al. Interdimensional universality of dynamic interfaces. Nature 458, 740–742 (2009).
(
10.1038/nature07874
) / Nature by K-J Kim (2009) -
Thiele, A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973).
(
10.1103/PhysRevLett.30.230
) / Phys. Rev. Lett. by A Thiele (1973) -
Thiele, A. Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains. J. Appl. Phys. 45, 377–393 (1974).
(
10.1063/1.1662989
) / J. Appl. Phys. by A Thiele (1974) -
Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2013).
(
10.1038/srep06784
) / Sci. Rep. by R Tomasello (2013) -
Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).
(
10.1038/nphys3883
) / Nat. Phys. by W Jiang (2016) -
Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved x-ray microscopy. Nat. Phys. 13, 170–175 (2016).
(
10.1038/nphys4000
) / Nat. Phys. by K Litzius (2016) -
Reichhardt, C., Ray, D. & Reichhardt, C. O. Collective transport properties of driven skyrmions with random disorder. Phys. Rev. Lett. 114, 217202 (2015).
(
10.1103/PhysRevLett.114.217202
) / Phys. Rev. Lett. by C Reichhardt (2015) -
Kim, J.-V. & Yoo, M.-W. Current-driven skyrmion dynamics in disordered films. Appl. Phys. Lett. 110, 132404 (2017).
(
10.1063/1.4979316
) / Appl. Phys. Lett. by J-V Kim (2017) -
Torrejon, J. et al. Unidirectional thermal effects in current-induced domain wall motion. Phys. Rev. Lett. 109, 106601 (2012).
(
10.1103/PhysRevLett.109.106601
) / Phys. Rev. Lett. by J Torrejon (2012) -
Di, K. et al. Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film. Phys. Rev. Lett. 114, 047201 (2015).
(
10.1103/PhysRevLett.114.047201
) / Phys. Rev. Lett. by K Di (2015) -
Chauleau, J.-Y., Weil, R., Thiaville, A. & Miltat, J. Magnetic domain walls displacement: automotion versus spin-transfer torque. Phys. Rev. B 82, 214414 (2010).
(
10.1103/PhysRevB.82.214414
) / Phys. Rev. B by J-Y Chauleau (2010) -
Donahue, M. J. & Porter, D. G. OOMMF user’s guide, version 1.0. Interagency Rep. NISTIR 6376, (1999) http://math.nist.gov/oommf/oommf_cites.html.
(
10.6028/NIST.IR.6376
)
Dates
Type | When |
---|---|
Created | 8 years, 2 months ago (June 8, 2017, 7:12 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 22, 2022, 8:14 p.m.) |
Indexed | 1 week, 1 day ago (Aug. 23, 2025, 9:37 p.m.) |
Issued | 8 years, 2 months ago (June 8, 2017) |
Published | 8 years, 2 months ago (June 8, 2017) |
Published Online | 8 years, 2 months ago (June 8, 2017) |
@article{Hrabec_2017, title={Current-induced skyrmion generation and dynamics in symmetric bilayers}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms15765}, DOI={10.1038/ncomms15765}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Hrabec, A. and Sampaio, J. and Belmeguenai, M. and Gross, I. and Weil, R. and Chérif, S. M. and Stashkevich, A. and Jacques, V. and Thiaville, A. and Rohart, S.}, year={2017}, month=jun }