Abstract
AbstractDielectric capacitors, although presenting faster charging/discharging rates and better stability compared with supercapacitors or batteries, are limited in applications due to their low energy density. Antiferroelectric (AFE) compounds, however, show great promise due to their atypical polarization-versus-electric field curves. Here we report our first-principles-based theoretical predictions that Bi1−xRxFeO3 systems (R being a lanthanide, Nd in this work) can potentially allow high energy densities (100–150 J cm−3) and efficiencies (80–88%) for electric fields that may be within the range of feasibility upon experimental advances (2–3 MV cm−1). In addition, a simple model is derived to describe the energy density and efficiency of a general AFE material, providing a framework to assess the effect on the storage properties of variations in doping, electric field magnitude and direction, epitaxial strain, temperature and so on, which can facilitate future search of AFE materials for energy storage.
Authors
3
- Bin Xu (first)
- Jorge Íñiguez (additional)
- L. Bellaiche (additional)
References
44
Referenced
175
-
Gross, R., Leach, M. & Bauen, A. Progress in renewable energy. Environ. Int. 29, 105–122 (2003).
(
10.1016/S0160-4120(02)00130-7
) / Environ. Int. by R Gross (2003) -
Haspert, L. C., Gillette, E., Lee, S. B. & Rubloff, G. W. Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage. Energy Environ. Sci. 6, 2578 (2013).
(
10.1039/c3ee40898a
) / Energy Environ. Sci. by LC Haspert (2013) -
Sherrill, S. A., Banerjee, P., Rubloff, G. W. & Lee, S. B. High to ultra-high power electrical energy storage. Phys. Chem. Chem. Phys. 13, 20714 (2011).
(
10.1039/c1cp22659b
) / Phys. Chem. Chem. Phys. by SA Sherrill (2011) -
Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03, 1330001 (2013).
(
10.1142/S2010135X13300016
) / J. Adv. Dielectr. by X Hao (2013) -
Ma, B., Kwon, D. K., Narayanan, M. & (Balu) Balachandran, U. Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J. Mater. Res. 24, 2993–2996 (2009).
(
10.1557/jmr.2009.0349
) / J. Mater. Res. by B Ma (2009) -
Ma, B., Narayanan, M. & (Balu) Balachandran, U. Dielectric strength and reliability of ferroelectric PLZT films deposited on nickel substrates. Mater. Lett. 63, 1353–1356 (2009).
(
10.1016/j.matlet.2009.03.021
) / Mater. Lett. by B Ma (2009) -
Hao, X., Wang, Y., Zhang, L., Zhang, L. & An, S. Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013).
(
10.1063/1.4802794
) / Appl. Phys. Lett. by X Hao (2013) -
Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Sci 313, 334–336 (2006).
(
10.1126/science.1127798
) / Sci by B Chu (2006) -
Correia, T. M. et al. A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96, 2699–2702 (2013).
(
10.1111/jace.12508
) / J. Am. Ceram. Soc. by TM Correia (2013) -
Peng, B. et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015).
(
10.1002/aelm.201500052
) / Adv. Electron. Mater. by B Peng (2015) -
Park, M. H. et al. Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 1400610 (2014).
(
10.1002/aenm.201400610
) / Adv. Energy Mater. by MH Park (2014) -
Xie, K. et al. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3, 2202–2207 (2011).
(
10.1039/c0nr00899k
) / Nanoscale by K Xie (2011) -
Chen, P. et al. Nonlinearity in the high-electric-field piezoelectricity of epitaxial BiFeO3 on SrTiO3 . Appl. Phys. Lett. 100, 062906 (2012).
(
10.1063/1.3683533
) / Appl. Phys. Lett. by P Chen (2012) -
Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 28, 3384–3392 (1972).
(
10.1107/S0567740872007976
) / Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. by AM Glazer (1972) -
Arnold, D., Knight, K., Morrison, F. & Lightfoot, P. Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase. Phys. Rev. Lett. 102, 027602 (2009).
(
10.1103/PhysRevLett.102.027602
) / Phys. Rev. Lett. by D Arnold (2009) -
Prosandeev, S., Wang, D., Ren, W., Íñiguez, J. & Bellaiche, L. Novel nanoscale twinned phases in perovskite oxides. Adv. Funct. Mater. 23, 234–240 (2013).
(
10.1002/adfm.201201467
) / Adv. Funct. Mater. by S Prosandeev (2013) -
Kan, D. et al. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3 . Adv. Funct. Mater. 20, 1108–1115 (2010).
(
10.1002/adfm.200902017
) / Adv. Funct. Mater. by D Kan (2010) -
Levin, I. et al. Displacive phase transitions and magnetic structures in Nd-Substituted BiFeO3 . Chem. Mater. 23, 2166–2175 (2011).
(
10.1021/cm1036925
) / Chem. Mater. by I Levin (2011) -
Xu, B., Wang, D., Íñiguez, J. & Bellaiche, L. Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2015).
(
10.1002/adfm.201403811
) / Adv. Funct. Mater. by B Xu (2015) -
Xu, B. et al. Hybrid Improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Adv. Funct. Mater. 25, 3626 (2015).
(
10.1002/adfm.201501113
) / Adv. Funct. Mater. by B Xu (2015) -
Christen, H. M., Nam, J. H., Kim, H. S., Hatt, A. J. & Spaldin, N. A. Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B 83, 144107 (2011).
(
10.1103/PhysRevB.83.144107
) / Phys. Rev. B by HM Christen (2011) - Chen, Z. et al. Coexistence of ferroelectric triclinic phases in highly strained BiFeO3 films. Phys. Rev. B 84, 1–6 (2011). / Phys. Rev. B by Z Chen (2011)
-
Stengel, M. & Íñiguez, J. Electrical phase diagram of bulk BiFeO3 . Phys. Rev. B 92, 235148 (2015).
(
10.1103/PhysRevB.92.235148
) / Phys. Rev. B by M Stengel (2015) -
Emery, S. B. et al. Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl. Phys. Lett. 97, 152902 (2010).
(
10.1063/1.3481065
) / Appl. Phys. Lett. by SB Emery (2010) -
Levin, I. et al. Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1−xNdxFeO3 (0.15≤x≤0.25). Phys. Rev. B 81, 020103 (2010).
(
10.1103/PhysRevB.81.020103
) / Phys. Rev. B by I Levin (2010) -
Chen, W. et al. Domain structure and in-plane switching in a highly strained Bi0.9Sm0.1FeO3 film. Appl. Phys. Lett. 99, 222904 (2011).
(
10.1063/1.3664394
) / Appl. Phys. Lett. by W Chen (2011) -
Cheng, C.-J. et al. Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 80, 014109 (2009).
(
10.1103/PhysRevB.80.014109
) / Phys. Rev. B by C-J Cheng (2009) -
Cheng, C.-J., Kan, D., Anbusathaiah, V., Takeuchi, I. & Nagarajan, V. Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).
(
10.1063/1.3520642
) / Appl. Phys. Lett. by C-J Cheng (2010) -
Borisevich, A. Y. et al. Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775 (2012).
(
10.1038/ncomms1778
) / Nat. Commun. by AY Borisevich (2012) - Wang, L. M. in Proceedings of 25th International Conference on Microelectronics, 576-579 (Belgrade, Serbia, 2006).
-
Ihlefeld, J. F. et al. Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008).
(
10.1063/1.2901160
) / Appl. Phys. Lett. by JF Ihlefeld (2008) -
Kan, D., Anbusathaiah, V. & Takeuchi, I. Chemical substitution-induced ferroelectric polarization rotation in BiFeO3 . Adv. Mater. 23, 1765–1769 (2011).
(
10.1002/adma.201004503
) / Adv. Mater. by D Kan (2011) -
Yao, K. et al. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1968–1974 (2011).
(
10.1109/TUFFC.2011.2039
) / IEEE Trans. Ultrason. Ferroelectr. Freq. Control by K Yao (2011) -
Ye, M., Sun, Q., Chen, X., Jiang, Z. & Wang, F. Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films. J. Am. Ceram. Soc. 94, 3234–3236 (2011).
(
10.1111/j.1551-2916.2011.04814.x
) / J. Am. Ceram. Soc. by M Ye (2011) -
Hao, X., Zhou, J. & An, S. Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films. J. Am. Ceram. Soc. 94, 1647–1650 (2011).
(
10.1111/j.1551-2916.2011.04460.x
) / J. Am. Ceram. Soc. by X Hao (2011) -
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater 7, 845 (2008).
(
10.1038/nmat2297
) / Nature Mater by P Simon (2008) -
Zhong, W., Vanderbilt, D. & Rabe, K. Phase transitions in BaTiO3 from first principles. Phys. Rev. Lett. 73, 1816 (1994).
(
10.1103/PhysRevLett.73.1861
) / Phys. Rev. Lett. by W Zhong (1994) -
Zhong, W., Vanderbilt, D. & Rabe, K. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3 . Phys. Rev. B 52, 6301 (1995).
(
10.1103/PhysRevB.52.6301
) / Phys. Rev. B by W Zhong (1995) -
Kornev, I., Bellaiche, L., Janolin, P. E., Dkhil, B. & Suard, E. Phase diagram of Pb(Zr,Ti)O3 solid solutions from first principles. Phys. Rev. Lett. 97, 157601 (2006).
(
10.1103/PhysRevLett.97.157601
) / Phys. Rev. Lett. by I Kornev (2006) -
Albrecht, D. et al. Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study. Phys. Rev. B 81, 140401 (2010).
(
10.1103/PhysRevB.81.140401
) / Phys. Rev. B by D Albrecht (2010) -
Kornev, I., Lisenkov, S., Haumont, R., Dkhil, B. & Bellaiche, L. Finite-temperature properties of multiferroic BiFeO3 . Phys. Rev. Lett. 99, 227602 (2007).
(
10.1103/PhysRevLett.99.227602
) / Phys. Rev. Lett. by I Kornev (2007) -
Lisenkov, S., Kornev, I. A. & Bellaiche, L. Properties of multiferroic BiFeO3 under high magnetic fields from first principles. Phys. Rev. B 79, 12101 (2009).
(
10.1103/PhysRevB.79.012101
) / Phys. Rev. B by S Lisenkov (2009) -
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
(
10.1107/S0021889811038970
) / J. Appl. Crystallogr. by K Momma (2011) -
Hu, Z., Ma, B., Koritala, R. E. & Balachandran, U. Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014).
(
10.1063/1.4887066
) / Appl. Phys. Lett. by Z Hu (2014)
Dates
Type | When |
---|---|
Created | 8 years, 2 months ago (May 30, 2017, 6:33 a.m.) |
Deposited | 2 years, 7 months ago (Dec. 22, 2022, 7:40 p.m.) |
Indexed | 2 days, 1 hour ago (Aug. 19, 2025, 6:22 a.m.) |
Issued | 8 years, 2 months ago (May 30, 2017) |
Published | 8 years, 2 months ago (May 30, 2017) |
Published Online | 8 years, 2 months ago (May 30, 2017) |
@article{Xu_2017, title={Designing lead-free antiferroelectrics for energy storage}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms15682}, DOI={10.1038/ncomms15682}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Xu, Bin and Íñiguez, Jorge and Bellaiche, L.}, year={2017}, month=may }