Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractElectrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. We develop scaling relations relating transition state energies to the carbon monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.

Authors 6
  1. Xinyan Liu (first)
  2. Jianping Xiao (additional)
  3. Hongjie Peng (additional)
  4. Xin Hong (additional)
  5. Karen Chan (additional)
  6. Jens K. Nørskov (additional)
References 66 Referenced 655
  1. Hori, Y. in Modern Aspects of Electrochemistry eds Vayenas C. G., White R. E., Gamboa-Aldeco M. E. 89–189Springer (2008).
  2. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014). (10.1021/ja505791r) / J. Am. Chem. Soc. by KP Kuhl (2014)
  3. Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013). (10.1021/cr300463y) / Chem. Rev. by AM Appel (2013)
  4. Torelli, D. A. et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal 6, 2100–2104 (2016). (10.1021/acscatal.5b02888) / ACS Catal by DA Torelli (2016)
  5. Reske, R. et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J. Phys. Chem. Lett. 4, 2410–2413 (2013). (10.1021/jz401087q) / J. Phys. Chem. Lett. by R Reske (2013)
  6. Spichiger-Ulmann, M. & Augustynski, J. Electrochemical reduction of bicarbonate ions at a bright palladium cathode. J. Chem. Soc. Faraday Trans. 1 81, 713–716 (1985). (10.1039/f19858100713) / J. Chem. Soc. Faraday Trans. 1 by M Spichiger-Ulmann (1985)
  7. Chen, Y., Lewis, N. & Xiang, C. Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2 . Energy Environ. Sci. 8, 3663–3674 (2015). (10.1039/C5EE02908B) / Energy Environ. Sci. by Y Chen (2015)
  8. Verma, S., Kim, B., Jhong, H.-R.M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2 . ChemSusChem. 9, 1972–1979 (2016). (10.1002/cssc.201600394) / ChemSusChem. by S Verma (2016)
  9. Rasul, S. et al. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 54, 2146–2150 (2014). (10.1002/anie.201410233) / Angew. Chem. Int. Ed. by S Rasul (2014)
  10. Yang, H., Yue, Y.-N., Qin, S., Wang, H. & Lu, J. Selective electrochemical reduction of CO2 to adjustable alcohol products by an organically doped alloy catalyst. Green Chem. 18, 3216–3220 (2016). (10.1039/C6GC00091F) / Green Chem. by H Yang (2016)
  11. Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2011). (10.1039/C1CP22700A) / Phys. Chem. Chem. Phys. by W Tang (2011)
  12. Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015). (10.1021/jacs.5b08259) / J. Am. Chem. Soc. by AS Hall (2015)
  13. Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014). (10.1021/cs500522g) / ACS Catal. by S Sen (2014)
  14. Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011). (10.1126/science.1209786) / Science by BA Rosen (2011)
  15. Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016). (10.1126/science.aaf4767) / Science by M Asadi (2016)
  16. Morris, A. J., McGibbon, R. T. & Bocarsly, A. B. Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. ChemSusChem. 4, 191–196 (2011). (10.1002/cssc.201000379) / ChemSusChem. by AJ Morris (2011)
  17. Heyes, J., Dunwell, M. & Xu, B. CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J.Phys. Chem. C 120, 17334–17341 (2016). (10.1021/acs.jpcc.6b03065) / J.Phys. Chem. C by J Heyes (2016)
  18. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016). (10.1073/pnas.1602984113) / Proc. Natl Acad. Sci. USA by A Wuttig (2016)
  19. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt Interfaces. Science 334, 1256–1260 (2011). (10.1126/science.1211934) / Science by R Subbaraman (2011)
  20. Mizuno, T., Kawamoto, M., Kaneco, S. & Ohta, K. Electrochemical reduction of carbon dioxide at Ti and hydrogen-storing Ti electrodes in KOH-methanol. Electrochim. Acta 43, 899–907 (1998). (10.1016/S0013-4686(97)00252-1) / Electrochim. Acta by T Mizuno (1998)
  21. Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016). (10.1021/jacs.5b11390) / J. Am. Chem. Soc. by H Xiao (2016)
  22. Lee, S. et al. Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide. J. Mater. Chem. A 3, 3029–3034 (2015). (10.1039/C4TA03893B) / J. Mater. Chem. A by S Lee (2015)
  23. Wu, K., Birgersson, E., Kim, B., Kenis, P. J. A. & Karimi, I. A. Modeling and experimental validation of electrochemical reduction of CO2 to CO in a microfluidic cell. J. Electrochem. Soc. 162, F23–F32 (2015). (10.1149/2.1021414jes) / J. Electrochem. Soc. by K Wu (2015)
  24. Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016). (10.1021/acs.jpclett.6b00358) / J. Phys. Chem. Lett. by JD Goodpaster (2016)
  25. Hoshi, N., Noma, M., Suzuki, T. & Hori, Y. Structural effect on the rate of CO2 reduction on single crystal electrodes of palladium. J. Electroanal. Chem. 421, 15–18 (1997). (10.1016/S0022-0728(96)01023-6) / J. Electroanal. Chem. by N Hoshi (1997)
  26. Hoshi, N., Kato, M. & Hori, Y. Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110). J. Electroanal. Chem. 440, 283–286 (1997). (10.1016/S0022-0728(97)00447-6) / J. Electroanal. Chem. by N Hoshi (1997)
  27. Hahn, C. et al. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J. Mater. Chem. A 3, 20185–20194 (2015). (10.1039/C5TA04863J) / J. Mater. Chem. A by C Hahn (2015)
  28. Hong, X., Chan, K., Tsai, C. & Nørskov, J. K. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal 6, 4428–4437 (2016). (10.1021/acscatal.6b00619) / ACS Catal by X Hong (2016)
  29. Pérez-Rodríguez, S., Rillo, N., Lázaro, M. J. & Pastor, E. Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction. Appl. Catal. B 163, 83–95 (2015). (10.1016/j.apcatb.2014.07.031) / Appl. Catal. B by S Pérez-Rodríguez (2015)
  30. Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014). (10.1038/ncomms5470) / Nat. Commun. by M Asadi (2014)
  31. Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem. 6, 1899–1905 (2014). (10.1002/cctc.201402128) / ChemCatChem. by K Chan (2014)
  32. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994). (10.1016/0013-4686(94)85172-7) / Electrochim. Acta by Y Hori (1994)
  33. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012). (10.1021/jz201461p) / J. Phys. Chem. Lett. by AA Peterson (2012)
  34. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models Wiley (2013).
  35. Tamura, J. et al. Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. Phys. Chem. Chem. Phys. 17, 26072–26078 (2015). (10.1039/C5CP03028E) / Phys. Chem. Chem. Phys. by J Tamura (2015)
  36. Kim, B., Ma, S., Molly Jhong, H.-R. & Kenis, P. J. A. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim. Acta 166, 271–276 (2015). (10.1016/j.electacta.2015.03.064) / Electrochim. Acta by B Kim (2015)
  37. Kaneco, S. et al. Electrochemical reduction of carbon dioxide on an indium wire in a KOH/methanol-based electrolyte at ambient temperature and pressure. Environ. Eng. Sci. 16, 131–137 (2009). (10.1089/ees.1999.16.131) / Environ. Eng. Sci. by S Kaneco (2009)
  38. Wang, S. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 13, 20760–20765 (2011). (10.1039/c1cp20547a) / Phys. Chem. Chem. Phys. by S Wang (2011)
  39. Yang, N. et al. Intrinsic selectivity and structure sensitivity of rhodium catalysts for C2+ oxygenate production. J. Am. Chem. Soc. 138, 3705–3714 (2016). (10.1021/jacs.5b12087) / J. Am. Chem. Soc. by N Yang (2016)
  40. Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014). (10.1126/science.1253486) / Science by AJ Medford (2014)
  41. Hoshi, N. & Hori, Y. Electrochemical reduction of carbon dioxide at a series of platinum single crystal electrodes. Electrochim. Acta 45, 4263–4270 (2000). (10.1016/S0013-4686(00)00559-4) / Electrochim. Acta by N Hoshi (2000)
  42. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007). (10.1103/PhysRevLett.99.016105) / Phys. Rev. Lett. by F Abild-Pedersen (2007)
  43. Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014). (10.1039/C4CP00692E) / Phys. Chem. Chem. Phys. by T Hatsukade (2014)
  44. Dahl, S. et al. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814–1817 (1999). (10.1103/PhysRevLett.83.1814) / Phys. Rev. Lett. by S Dahl (1999)
  45. Marković, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997). (10.1021/jp970930d) / J. Phys. Chem. B by NM Marković (1997)
  46. Roberts, F. S., Kuhl, K. P. & Nilsson, A. Electroreduction of carbon monoxide over a copper nanocube catalyst: surface structure and pH dependence on selectivity. ChemCatChem. 8, 1119–1124 (2016). (10.1002/cctc.201501189) / ChemCatChem. by FS Roberts (2016)
  47. Kim, Y. G., Javier, A., Baricuatro, J. H. & Soriaga, M. P. Regulating the product distribution of CO reduction by the atomic-level structural modification of the Cu electrode surface. Electrocatalysis 7, 391–399 (2016). (10.1007/s12678-016-0314-1) / Electrocatalysis by YG Kim (2016)
  48. Matsushima, H., Taranovskyy, A., Haak, C., Grunder, Y. & Magnussen, O. M. Reconstruction of Cu(100) electrode surfaces during hydrogen evolution. J. Am. Chem. Soc. 131, 10362–10363 (2009). (10.1021/ja904033t) / J. Am. Chem. Soc. by H Matsushima (2009)
  49. Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014). (10.1021/ja5095099) / J. Am. Chem. Soc. by W Zhu (2014)
  50. Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014). (10.1021/ja500328k) / J. Am. Chem. Soc. by R Reske (2014)
  51. Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015). (10.1021/jacs.5b06227) / J. Am. Chem. Soc. by A Verdaguer-Casadevall (2015)
  52. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.Condens. Matter 21, 395502 (2009). (10.1088/0953-8984/21/39/395502) / J. Phys.Condens. Matter by P Giannozzi (2009)
  53. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). (10.1021/acs.jpclett.5b00722) / J. Phys. Chem. Lett. by JH Montoya (2015)
  54. Monkhorst, H. & Pack, J. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by H Monkhorst (1976)
  55. Dominguez-Ramos, A., Singh, B., Zhang, X., Hertwich, E. G. & Irabien, A. Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J. Clean. Prod. 104, 148–155 (2015). (10.1016/j.jclepro.2013.11.046) / J. Clean. Prod. by A Dominguez-Ramos (2015)
  56. Munter, T. R., Bligaard, T., Christensen, C. H. & Nørskov, J. K. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Phys. Chem. Chem. Phys. 10, 5202–5205 (2008). (10.1039/b720021h) / Phys. Chem. Chem. Phys. by TR Munter (2008)
  57. Shi, C., Chan, K. & Norskov, J. Barriers of electrochemical CO2 reduction on transition metals. Org. Process Res. Dev. 20, 1424–1430 (2016). (10.1021/acs.oprd.6b00103) / Org. Process Res. Dev. by C Shi (2016)
  58. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). (10.1038/nchem.121) / Nat. Chem. by JK Nørskov (2009)
  59. Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). (10.1021/acs.jpclett.5b00722) / J. Phys. Chem. Lett. by JH Montoya (2015)
  60. Rossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V. & Nørskov, J. K. Modeling the electrified solid-liquid interface. Chem. Phys. Lett. 466, 68–71 (2008). (10.1016/j.cplett.2008.10.024) / Chem. Phys. Lett. by J Rossmeisl (2008)
  61. Stoyanov, E. S., Stoyanova, I. V. & Reed, C. A. The Structure of the hydrogen ion (Haq+) in Water. J. Am. Chem. Soc. 132, 1484–1485 (2010). (10.1021/ja9101826) / J. Am. Chem. Soc. by ES Stoyanov (2010)
  62. Hammer, B. in GPAW 2013: Users and Developers Meeting Technical University of Denmark (2013).
  63. Łukaszewski, M. & Czerwiński, A. Electrochemical behavior of Pd–Rh alloys. J. Solid State Electrochem. 11, 339–349 (2007). (10.1007/s10008-006-0142-y) / J. Solid State Electrochem. by M Łukaszewski (2007)
  64. Lausche, A. C. et al. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces. J. Catal. 307, 275–282 (2013). (10.1016/j.jcat.2013.08.002) / J. Catal. by AC Lausche (2013)
  65. Shi, C., Hansen, H. A., Lausche, A. C. & Nørskov, J. K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720–4728 (2014). (10.1039/c3cp54822h) / Phys. Chem. Chem. Phys. by C Shi (2014)
  66. Studt, F., Sharafutdinov, I. & Abild-Pedersen, F. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014). (10.1038/nchem.1873) / Nat. Chem. by F Studt (2014)
Dates
Type When
Created 8 years, 3 months ago (May 22, 2017, 5:04 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 7:44 p.m.)
Indexed 4 days, 5 hours ago (Aug. 22, 2025, 12:56 a.m.)
Issued 8 years, 3 months ago (May 22, 2017)
Published 8 years, 3 months ago (May 22, 2017)
Published Online 8 years, 3 months ago (May 22, 2017)
Funders 0

None

@article{Liu_2017, title={Understanding trends in electrochemical carbon dioxide reduction rates}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms15438}, DOI={10.1038/ncomms15438}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Liu, Xinyan and Xiao, Jianping and Peng, Hongjie and Hong, Xin and Chan, Karen and Nørskov, Jens K.}, year={2017}, month=may }