Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractFerroelectric domain walls constitute a completely new class of sheet-like functional material. Moreover, since domain walls are generally writable, erasable and mobile, they could be useful in functionally agile devices: for example, creating and moving conducting walls could make or break electrical connections in new forms of reconfigurable nanocircuitry. However, significant challenges exist: site-specific injection and annihilation of planar walls, which show robust conductivity, has not been easy to achieve. Here, we report the observation, mechanical writing and controlled movement of charged conducting domain walls in the improper-ferroelectric Cu3B7O13Cl. Walls are straight, tens of microns long and exist as a consequence of elastic compatibility conditions between specific domain pairs. We show that site-specific injection of conducting walls of up to hundreds of microns in length can be achieved through locally applied point-stress and, once created, that they can be moved and repositioned using applied electric fields.

Bibliography

McQuaid, R. G. P., Campbell, M. P., Whatmore, R. W., Kumar, A., & Gregg, J. M. (2017). Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nature Communications, 8(1).

Authors 5
  1. Raymond G.P. McQuaid (first)
  2. Michael P. Campbell (additional)
  3. Roger W. Whatmore (additional)
  4. Amit Kumar (additional)
  5. J. Marty Gregg (additional)
References 37 Referenced 75
  1. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Func. Mater. 22, 3936–3944 (2012). (10.1002/adfm.201201174) / Adv. Func. Mater. by M Schröder (2012)
  2. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012). (10.1038/nmat3249) / Nat. Mater. by D Meier (2012)
  3. Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2011). (10.1021/nl203349b) / Nano Lett. by P Maksymovych (2011)
  4. Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: experimental evidence of. J. Phys. Condens. Matter 10, L377–L380 (1998). (10.1088/0953-8984/10/22/003) / J. Phys. Condens. Matter by A Aird (1998)
  5. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). (10.1038/nmat2373) / Nat. Mater. by J Seidel (2009)
  6. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3 . Phys. Rev. Lett. 105, 197603 (2010). (10.1103/PhysRevLett.105.197603) / Phys. Rev. Lett. by J Seidel (2010)
  7. Schaab, J. et al. Optimization of electronic domain-wall properties by aliovalent cation substitution. Adv. Electron. Mater. 2, 1500195 (2016). (10.1002/aelm.201500195) / Adv. Electron. Mater. by J Schaab (2016)
  8. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011). (10.1002/adma.201102254) / Adv. Mater. by J Guyonnet (2011)
  9. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011). (10.1103/PhysRevLett.107.127601) / Phys. Rev. Lett. by S Farokhipoor (2011)
  10. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3 . Nat. Commun. 4, 1808 (2013). (10.1038/ncomms2839) / Nat. Commun. by T Sluka (2013)
  11. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015). (10.1038/nmat4168) / Nat. Mater. by YS Oh (2015)
  12. Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotech. 10, 614–618 (2015). (10.1038/nnano.2015.114) / Nat. Nanotech. by A Crassous (2015)
  13. Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroelectric Crystals and Thin Films 70–71Springer (2010). (10.1007/978-1-4419-1417-0)
  14. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Usp. 17, 199–214 (1974). (10.1070/PU1974v017n02ABEH004336) / Sov. Phys. Usp. by AP Levanyuk (1974)
  15. Lilienblum, M. et al. Ferroelectricity in the multiferroic hexagonal manganites. Nat. Phys. 11, 1070–1073 (2015). (10.1038/nphys3468) / Nat. Phys. by M Lilienblum (2015)
  16. Fousek, J. & Janovec, V. The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, 135–142 (1969). (10.1063/1.1657018) / J. Appl. Phys. by J Fousek (1969)
  17. Keve, E. T., Abrahams, S. C., Nassau, K. & Glass, A. M. Ferroelectric ferroelastic paramagnetic terbium molybdate β-Tb2(MoO4)3 . Solid State Commun. 8, 1517–1520 (1970). (10.1016/0038-1098(70)90598-3) / Solid State Commun. by ET Keve (1970)
  18. Erhart, J. Domain wall orientations in ferroelastics and ferroelectrics. Phase Transit. 77, 989–1074 (2004). (10.1080/01411590410001710744) / Phase Transit. by J Erhart (2004)
  19. Bednyakov, P., Sluka, T., Tagantsev, A., Damjanovic, D. & Setter, N. Free-carrier-compensated charged domain walls produced with super-bandgap illumination in insulating ferroelectrics. Adv. Mater. 28, 9498–9503 (2016). (10.1002/adma.201602874) / Adv. Mater. by P Bednyakov (2016)
  20. Solomon, P. M. et al. Pathway to the piezoelectronic transduction logic device. Nano Lett. 15, 2391–2395 (2015). (10.1021/nl5046796) / Nano Lett. by PM Solomon (2015)
  21. Fouassier, C., Levasseur, A., Joubert, J. C., Muller, J. & Hagenmuller, P. Les Systèmes B2O3-MO-MS boracites M-S (M=Mg, Mn, Fe, Cd) et sodalites M-S (M=Co, Zn). Z. Anorg. Allg. Chem. 375, 202–208 (1970). (10.1002/zaac.19703750210) / Z. Anorg. Allg. Chem. by C Fouassier (1970)
  22. Ito, T., Morimoto, N. & Sadanaga, R. The crystal structure of boracite. Acta Cryst. 4, 310–316 (1951). (10.1107/S0365110X51001033) / Acta Cryst. by T Ito (1951)
  23. Thornley, F. R., Nelmes, R. J. & Kennedy, N. S. J. Structural studies of Cu-Cl-boracite. Ferroelectrics 13, 357–359 (1976). (10.1080/00150197608236611) / Ferroelectrics by FR Thornley (1976)
  24. Zimmermann, A., Bollmann, W. & Schmid, H. Observations of ferroelectric domains in boracites. Phys. Status Solidi A 3, 707–720 (1970). (10.1002/pssa.19700030317) / Phys. Status Solidi A by A Zimmermann (1970)
  25. Schmid, H. in Growth of Crystals Volume 7 (eds Shubnikova, A. V. & Sheftal, N. N.) 25–52 (Consultants Bureau, 1969).
  26. Ye, Z.-G., Janner, A.-M. & Schmid, H. Structural and magnetic phase transitions in Fe-I boracite. J. Phys. Condens. Matter 9, 2607–2621 (1997). (10.1088/0953-8984/9/12/009) / J. Phys. Condens. Matter by Z-G Ye (1997)
  27. Schmid, H. & Pétermann, L. A. Dielectric constant and electric resistivity of copper chlorine boracite, Cu3B7O13Cl (Cu‐Cl‐B). Phys. Status Solidi A 41, K147–K150 (1977). (10.1002/pssa.2210410255) / Phys. Status Solidi A by H Schmid (1977)
  28. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011). (10.1103/PhysRevB.83.235313) / Phys. Rev. B by EA Eliseev (2011)
  29. Ascher, E., Schmid, H. & Tar, D. Dielectric properties of boracites and evidence for ferroelectricity. Solid State Commun. 2, 45–49 (1964). (10.1016/0038-1098(64)90571-X) / Solid State Commun. by E Ascher (1964)
  30. Schneider, G. A., Scholz, T., Muñoz-Saldaña, J. & Swain, M. V. Domain rearrangement during nanoindentation in single-crystalline barium titanate measured by atomic force microscopy and piezoresponse force microscopy. Appl. Phys. Lett. 86, 192903 (2005). (10.1063/1.1920410) / Appl. Phys. Lett. by GA Schneider (2005)
  31. Torre, L. P., Abrahams, S. C. & Barns, R. L. Ferroelectric and ferroelastic properties of Mg-Cl-Boracite. Ferroelectrics 4, 291–297 (1972). (10.1080/00150197308235770) / Ferroelectrics by LP Torre (1972)
  32. Lu, H. et al. Mechanical writing of ferroelectric polarisation. Science 336, 59–61 (2012). (10.1126/science.1218693) / Science by H Lu (2012)
  33. Schmid, H. & Tippman, H. Gas phase synthesis of epitaxial layers of nickel-chlorine boracite on chromium-chlorine boracite. J. Cryst. Growth 46, 723–742 (1979). (10.1016/0022-0248(79)90220-3) / J. Cryst. Growth by H Schmid (1979)
  34. Mack, K. Ueber das pyroelektrische Verhalten des Boracits. Z. Kristallogr. 8, 503–522 (1884). (10.1524/zkri.1884.8.1.503) / Z. Kristallogr. by K Mack (1884)
  35. Stolichnov, I. et al. Bent ferroelectric domain walls as reconfigurable metallic-like channels. Nano Lett. 24, 8049–8055 (2015). (10.1021/acs.nanolett.5b03450) / Nano Lett. by I Stolichnov (2015)
  36. Whatmore, R. W., Brierley, C. J. & Ainger, F. W. Nucleation control during the growth of boracite single-crystals. Ferroelectrics 28, 329–332 (1980). (10.1080/00150198008227101) / Ferroelectrics by RW Whatmore (1980)
  37. Schmid, H., Genequand, P., Pouilly, G. & Chan, P. Pyroelectricity of Fe-I and Cu-Cl boracite. Ferroelectrics 25, 539–542 (1980). (10.1080/00150198008207065) / Ferroelectrics by H Schmid (1980)
Dates
Type When
Created 8 years, 3 months ago (May 16, 2017, 5:46 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 8:02 p.m.)
Indexed 4 weeks, 1 day ago (Aug. 2, 2025, 12:30 a.m.)
Issued 8 years, 3 months ago (May 16, 2017)
Published 8 years, 3 months ago (May 16, 2017)
Published Online 8 years, 3 months ago (May 16, 2017)
Funders 0

None

@article{McQuaid_2017, title={Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms15105}, DOI={10.1038/ncomms15105}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={McQuaid, Raymond G.P. and Campbell, Michael P. and Whatmore, Roger W. and Kumar, Amit and Gregg, J. Marty}, year={2017}, month=may }