Abstract
AbstractInterest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
Authors
8
- Wenjun Ding (first)
- Jianbao Zhu (additional)
- Zhe Wang (additional)
- Yanfei Gao (additional)
- Di Xiao (additional)
- Yi Gu (additional)
- Zhenyu Zhang (additional)
- Wenguang Zhu (additional)
References
37
Referenced
1,134
-
Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).
(
10.1063/1.2336999
) / J. Appl. Phys. by N Setter (2006) -
Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).
(
10.1126/science.1129564
) / Science by JF Scott (2007) - Rabe K. M., Ahn C. H., Triscone J.-M. (eds). Physics of Ferroelectrics: A Modern Perspective Springer (2007).
-
Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).
(
10.1126/science.1092508
) / Science by CH Ahn (2004) -
Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
(
10.1103/RevModPhys.77.1083
) / Rev. Mod. Phys. by M Dawber (2005) -
Rao, C. N. R. & Maitra, U. Inorganic graphene analogs. Annu. Rev. Mater. Res. 45, 29–62 (2015).
(
10.1146/annurev-matsci-070214-021141
) / Annu. Rev. Mater. Res. by CNR Rao (2015) -
Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).
(
10.1021/cr300263a
) / Chem. Rev. by M Xu (2013) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
(
10.1038/nphys2942
) / Nat. Phys. by X Xu (2014) -
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).
(
10.1126/science.1256815
) / Science by X Qian (2014) -
Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).
(
10.1126/science.aad8609
) / Science by K Chang (2016) -
Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2 . Phys. Rev. Lett. 112, 157601 (2014).
(
10.1103/PhysRevLett.112.157601
) / Phys. Rev. Lett. by SN Shirodkar (2014) -
Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944).
(
10.1103/PhysRev.65.117
) / Phys. Rev. by L Onsager (1944) -
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
(
10.1038/nature01501
) / Nature by J Junquera (2003) -
Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).
(
10.1126/science.1098252
) / Science by DD Fong (2004) -
Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).
(
10.1126/science.aaa6442
) / Science by D Lee (2015) -
Osamura, K., Murakami, Y. & Tomiie, Y. Crystal structures of α- and β-indium selenide, In2Se3 . J. Phys. Soc. Jpn 21, 1848 (1966).
(
10.1143/JPSJ.21.1848
) / J. Phys. Soc. Jpn by K Osamura (1966) -
Ye, J., Soeda, S., Nakamura, Y. & Nittono, O. Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn J. Appl. Phys. 37, 4264–4271 (1998).
(
10.1143/JJAP.37.4264
) / Jpn J. Appl. Phys. by J Ye (1998) -
Tao, X. & Gu, Y. Crystalline−crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13, 3501–3505 (2013).
(
10.1021/nl400888p
) / Nano Lett. by X Tao (2013) -
Jacobs-Gedrim, R. B. et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014).
(
10.1021/nn405037s
) / ACS Nano by RB Jacobs-Gedrim (2014) -
Lin, M. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 135, 13274–13277 (2013).
(
10.1021/ja406351u
) / J. Am. Chem. Soc. by M Lin (2013) -
Popović, S., Čelustka, B. & Bidjin, D. X-ray diffraction measurement of lattice parameters of In2Se3 . Phys. Status Solidi A 6, 301–304 (1971).
(
10.1002/pssa.2210060134
) / Phys. Status Solidi A by S Popović (1971) -
Popović, S., Tonejc, A., Gržeta-Plenković, B., Čelustka, B. & Trojko, R. Revised and new crystal data for Indium Selenides. J. Appl. Crystallogr. 12, 416–420 (1979).
(
10.1107/S0021889879012863
) / J. Appl. Crystallogr. by S Popović (1979) -
Rasmussen, A. M., Teklemichael, S. T., Mafi, E., Gu, Y. & McCluskey, M. D. Pressure-induced phase transformation of In2Se3 . Appl. Phys. Lett. 102, 062105 (2013).
(
10.1063/1.4792313
) / Appl. Phys. Lett. by AM Rasmussen (2013) -
Miyazawa, H. & Sugaike, S. Phase transition of In2Se3 . J. Phys. Soc. Jpn 12, 312 (1957).
(
10.1143/JPSJ.12.312
) / J. Phys. Soc. Jpn by H Miyazawa (1957) -
Debbichi, L., Eriksson, O. & Lebègue, S. Two-dimensional Indium Selenides compounds: an ab initio study. J. Phys. Chem. Lett. 6, 3098–3103 (2015).
(
10.1021/acs.jpclett.5b01356
) / J. Phys. Chem. Lett. by L Debbichi (2015) -
Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).
(
10.1038/358136a0
) / Nature by RE Cohen (1992) -
Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
(
10.1038/nature08105
) / Nature by Y Zhang (2009) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blöchl (1994) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
(
10.1063/1.2404663
) / J. Chem. Phys. by AV Krukau (2006) -
Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).
(
10.1103/PhysRevB.40.3616
) / Phys. Rev. B by M Methfessel (1989) -
King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).
(
10.1103/PhysRevB.47.1651
) / Phys. Rev. B by RD King-Smith (1993) -
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
(
10.1063/1.1329672
) / J. Chem. Phys. by G Henkelman (2000) -
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
(
10.1063/1.3382344
) / J. Chem. Phys. by S Grimme (2010)
Dates
Type | When |
---|---|
Created | 8 years, 4 months ago (April 7, 2017, 5:38 a.m.) |
Deposited | 2 years, 7 months ago (Dec. 22, 2022, 7:28 p.m.) |
Indexed | 1 hour, 2 minutes ago (Aug. 20, 2025, 10:22 p.m.) |
Issued | 8 years, 4 months ago (April 7, 2017) |
Published | 8 years, 4 months ago (April 7, 2017) |
Published Online | 8 years, 4 months ago (April 7, 2017) |
@article{Ding_2017, title={Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms14956}, DOI={10.1038/ncomms14956}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ding, Wenjun and Zhu, Jianbao and Wang, Zhe and Gao, Yanfei and Xiao, Di and Gu, Yi and Zhang, Zhenyu and Zhu, Wenguang}, year={2017}, month=apr }