Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractInterest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.

Bibliography

Ding, W., Zhu, J., Wang, Z., Gao, Y., Xiao, D., Gu, Y., Zhang, Z., & Zhu, W. (2017). Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nature Communications, 8(1).

Authors 8
  1. Wenjun Ding (first)
  2. Jianbao Zhu (additional)
  3. Zhe Wang (additional)
  4. Yanfei Gao (additional)
  5. Di Xiao (additional)
  6. Yi Gu (additional)
  7. Zhenyu Zhang (additional)
  8. Wenguang Zhu (additional)
References 37 Referenced 1,134
  1. Setter, N. et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006). (10.1063/1.2336999) / J. Appl. Phys. by N Setter (2006)
  2. Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007). (10.1126/science.1129564) / Science by JF Scott (2007)
  3. Rabe K. M., Ahn C. H., Triscone J.-M. (eds). Physics of Ferroelectrics: A Modern Perspective Springer (2007).
  4. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004). (10.1126/science.1092508) / Science by CH Ahn (2004)
  5. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005). (10.1103/RevModPhys.77.1083) / Rev. Mod. Phys. by M Dawber (2005)
  6. Rao, C. N. R. & Maitra, U. Inorganic graphene analogs. Annu. Rev. Mater. Res. 45, 29–62 (2015). (10.1146/annurev-matsci-070214-021141) / Annu. Rev. Mater. Res. by CNR Rao (2015)
  7. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). (10.1021/cr300263a) / Chem. Rev. by M Xu (2013)
  8. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). (10.1038/nature12385) / Nature by AK Geim (2013)
  9. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014). (10.1038/nphys2942) / Nat. Phys. by X Xu (2014)
  10. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014). (10.1126/science.1256815) / Science by X Qian (2014)
  11. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016). (10.1126/science.aad8609) / Science by K Chang (2016)
  12. Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2 . Phys. Rev. Lett. 112, 157601 (2014). (10.1103/PhysRevLett.112.157601) / Phys. Rev. Lett. by SN Shirodkar (2014)
  13. Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944). (10.1103/PhysRev.65.117) / Phys. Rev. by L Onsager (1944)
  14. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003). (10.1038/nature01501) / Nature by J Junquera (2003)
  15. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004). (10.1126/science.1098252) / Science by DD Fong (2004)
  16. Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015). (10.1126/science.aaa6442) / Science by D Lee (2015)
  17. Osamura, K., Murakami, Y. & Tomiie, Y. Crystal structures of α- and β-indium selenide, In2Se3 . J. Phys. Soc. Jpn 21, 1848 (1966). (10.1143/JPSJ.21.1848) / J. Phys. Soc. Jpn by K Osamura (1966)
  18. Ye, J., Soeda, S., Nakamura, Y. & Nittono, O. Crystal structures and phase transformation in In2Se3 compound semiconductor. Jpn J. Appl. Phys. 37, 4264–4271 (1998). (10.1143/JJAP.37.4264) / Jpn J. Appl. Phys. by J Ye (1998)
  19. Tao, X. & Gu, Y. Crystalline−crystalline phase transformation in two-dimensional In2Se3 thin layers. Nano Lett. 13, 3501–3505 (2013). (10.1021/nl400888p) / Nano Lett. by X Tao (2013)
  20. Jacobs-Gedrim, R. B. et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014). (10.1021/nn405037s) / ACS Nano by RB Jacobs-Gedrim (2014)
  21. Lin, M. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 135, 13274–13277 (2013). (10.1021/ja406351u) / J. Am. Chem. Soc. by M Lin (2013)
  22. Popović, S., Čelustka, B. & Bidjin, D. X-ray diffraction measurement of lattice parameters of In2Se3 . Phys. Status Solidi A 6, 301–304 (1971). (10.1002/pssa.2210060134) / Phys. Status Solidi A by S Popović (1971)
  23. Popović, S., Tonejc, A., Gržeta-Plenković, B., Čelustka, B. & Trojko, R. Revised and new crystal data for Indium Selenides. J. Appl. Crystallogr. 12, 416–420 (1979). (10.1107/S0021889879012863) / J. Appl. Crystallogr. by S Popović (1979)
  24. Rasmussen, A. M., Teklemichael, S. T., Mafi, E., Gu, Y. & McCluskey, M. D. Pressure-induced phase transformation of In2Se3 . Appl. Phys. Lett. 102, 062105 (2013). (10.1063/1.4792313) / Appl. Phys. Lett. by AM Rasmussen (2013)
  25. Miyazawa, H. & Sugaike, S. Phase transition of In2Se3 . J. Phys. Soc. Jpn 12, 312 (1957). (10.1143/JPSJ.12.312) / J. Phys. Soc. Jpn by H Miyazawa (1957)
  26. Debbichi, L., Eriksson, O. & Lebègue, S. Two-dimensional Indium Selenides compounds: an ab initio study. J. Phys. Chem. Lett. 6, 3098–3103 (2015). (10.1021/acs.jpclett.5b01356) / J. Phys. Chem. Lett. by L Debbichi (2015)
  27. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992). (10.1038/358136a0) / Nature by RE Cohen (1992)
  28. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  29. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  31. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  33. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006). (10.1063/1.2404663) / J. Chem. Phys. by AV Krukau (2006)
  34. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989). (10.1103/PhysRevB.40.3616) / Phys. Rev. B by M Methfessel (1989)
  35. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993). (10.1103/PhysRevB.47.1651) / Phys. Rev. B by RD King-Smith (1993)
  36. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). (10.1063/1.1329672) / J. Chem. Phys. by G Henkelman (2000)
  37. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). (10.1063/1.3382344) / J. Chem. Phys. by S Grimme (2010)
Dates
Type When
Created 8 years, 4 months ago (April 7, 2017, 5:38 a.m.)
Deposited 2 years, 7 months ago (Dec. 22, 2022, 7:28 p.m.)
Indexed 1 hour, 2 minutes ago (Aug. 20, 2025, 10:22 p.m.)
Issued 8 years, 4 months ago (April 7, 2017)
Published 8 years, 4 months ago (April 7, 2017)
Published Online 8 years, 4 months ago (April 7, 2017)
Funders 0

None

@article{Ding_2017, title={Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms14956}, DOI={10.1038/ncomms14956}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ding, Wenjun and Zhu, Jianbao and Wang, Zhe and Gao, Yanfei and Xiao, Di and Gu, Yi and Zhang, Zhenyu and Zhu, Wenguang}, year={2017}, month=apr }