Abstract
AbstractIn the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
Bibliography
Boyn, S., Grollier, J., Lecerf, G., Xu, B., Locatelli, N., Fusil, S., Girod, S., Carrétéro, C., Garcia, K., Xavier, S., Tomas, J., Bellaiche, L., Bibes, M., Barthélémy, A., Saïghi, S., & Garcia, V. (2017). Learning through ferroelectric domain dynamics in solid-state synapses. Nature Communications, 8(1).
Authors
16
- Sören Boyn (first)
- Julie Grollier (additional)
- Gwendal Lecerf (additional)
- Bin Xu (additional)
- Nicolas Locatelli (additional)
- Stéphane Fusil (additional)
- Stéphanie Girod (additional)
- Cécile Carrétéro (additional)
- Karin Garcia (additional)
- Stéphane Xavier (additional)
- Jean Tomas (additional)
- Laurent Bellaiche (additional)
- Manuel Bibes (additional)
- Agnès Barthélémy (additional)
- Sylvain Saïghi (additional)
- Vincent Garcia (additional)
References
38
Referenced
513
- Hebb, D. O. The Organization of Behavior Wiley & Sons (1949).
-
Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).
(
10.1038/81453
) / Nat. Neurosci. by LF Abbott (2000) -
Zamarreño-Ramos, C. et al. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011).
(
10.3389/fnins.2011.00026
) / Front. Neurosci. by C Zamarreño-Ramos (2011) -
Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).
(
10.1126/science.275.5297.213
) / Science by H Markram (1997) -
Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).
(
10.1523/JNEUROSCI.18-24-10464.1998
) / J. Neurosci. by GQ Bi (1998) -
Masquelier, T., Guyonneau, R. & Thorpe, S. J. Competitive STDP-based spike pattern learning. Neural Comput. 21, 1259–1276 (2009).
(
10.1162/neco.2008.06-08-804
) / Neural Comput. by T Masquelier (2009) -
Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
(
10.1038/nnano.2012.240
) / Nat. Nanotechnol. by JJ Yang (2013) -
Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).
(
10.1109/TCT.1971.1083337
) / IEEE Trans. Circuit Theory by L Chua (1971) -
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
(
10.1038/nature06932
) / Nature by DB Strukov (2008) -
Szot, K. et al. TiO2-a prototypical memristive material. Nanotechnology 22, 254001 (2011).
(
10.1088/0957-4484/22/25/254001
) / Nanotechnology by K Szot (2011) -
Lee, M.-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5−x)/TaO(2−x) bilayer structures. Nat. Mater. 10, 625–630 (2011).
(
10.1038/nmat3070
) / Nat. Mater. by M-J Lee (2011) -
Jo, S. H. & Lu, W. CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8, 392–397 (2008).
(
10.1021/nl073225h
) / Nano Lett. by SH Jo (2008) -
Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012).
(
10.1021/nl201040y
) / Nano Lett. by D Kuzum (2012) -
Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
(
10.1021/nl904092h
) / Nano Lett. by SH Jo (2010) -
Seo, K. et al. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnol. 22, 254023 (2011).
(
10.1088/0957-4484/22/25/254023
) / Nanotechnol. by K Seo (2011) -
Alibart, F. et al. A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing. Adv. Funct. Mater. 22, 609–616 (2012).
(
10.1002/adfm.201101935
) / Adv. Funct. Mater. by F Alibart (2012) -
Suri, M. et al. Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron. Devices 60, 2402–2409 (2013).
(
10.1109/TED.2013.2263000
) / IEEE Trans. Electron. Devices by M Suri (2013) -
Li, Y. et al. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3, 1619 (2013).
(
10.1038/srep01619
) / Sci. Rep. by Y Li (2013) -
Mandal, S., El-Amin, A., Alexander, K., Rajendran, B. & Jha, R. Novel synaptic memory device for neuromorphic computing. Sci. Rep. 4, 5333 (2014).
(
10.1038/srep05333
) / Sci. Rep. by S Mandal (2014) -
Wang, Y.-F., Lin, Y.-C., Wang, I.-T., Lin, T.-P. & Hou, T.-H. Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep. 5, 10150 (2015).
(
10.1038/srep10150
) / Sci. Rep. by Y-F Wang (2015) -
Choi, S., Sheridan, P. & Lu, W. D. Data clustering using memristor networks. Sci. Rep. 5, 10492 (2015).
(
10.1038/srep10492
) / Sci. Rep. by S Choi (2015) -
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
(
10.1038/nature14441
) / Nature by M Prezioso (2015) -
Tsymbal, E. Y. Tunneling across a ferroelectric. Science 313, 181–183 (2006).
(
10.1126/science.1126230
) / Science by EY Tsymbal (2006) -
Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).
(
10.1038/ncomms5289
) / Nat. Commun. by V Garcia (2014) -
Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).
(
10.1038/nmat3415
) / Nat. Mater. by A Chanthbouala (2012) -
Yamada, H. et al. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7, 5385–5390 (2013).
(
10.1021/nn401378t
) / ACS Nano by H Yamada (2013) -
Boyn, S. et al. High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl. Phys. Lett. 104, 52909 (2014).
(
10.1063/1.4864100
) / Appl. Phys. Lett. by S Boyn (2014) -
Linares-Barranco, B. & Serrano-Gotarredona, T. Memristance can explain spike-time-dependent-plasticity in neural synapses. Preprint at http://precedings.nature.com/documents/3010/version/1 (2009).
(
10.1038/npre.2009.3010.1
) -
Gruverman, A. et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 82902 (2005).
(
10.1063/1.2010605
) / Appl. Phys. Lett. by A Gruverman (2005) -
Bhattacharjee, S., Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).
(
10.1103/PhysRevLett.112.147601
) / Phys. Rev. Lett. by S Bhattacharjee (2014) -
Tagantsev, A., Stolichnov, I., Setter, N., Cross, J. & Tsukada, M. Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).
(
10.1103/PhysRevB.66.214109
) / Phys. Rev. B by A Tagantsev (2002) -
Jo, J. Y. et al. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99, 267602 (2007).
(
10.1103/PhysRevLett.99.267602
) / Phys. Rev. Lett. by JY Jo (2007) -
Strukov, D. B. & Williams, R. S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl Acad. Sci. USA 106, 20155–20158 (2009).
(
10.1073/pnas.0906949106
) / Proc. Natl Acad. Sci. USA by DB Strukov (2009) -
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
(
10.1038/nature14539
) / Nature by Y LeCun (2015) -
Marinova, M. et al. Depth profiling charge accumulation from a ferroelectric into a doped mott insulator. Nano Lett. 15, 2533–2541 (2015).
(
10.1021/acs.nanolett.5b00104
) / Nano Lett. by M Marinova (2015) -
Wang, D., Weerasinghe, J. & Bellaiche, L. Atomistic molecular dynamic simulations of multiferroics. Phys. Rev. Lett. 109, 67203 (2012).
(
10.1103/PhysRevLett.109.067203
) / Phys. Rev. Lett. by D Wang (2012) -
Kornev, I. A., Lisenkov, S., Haumont, R., Dkhil, B. & Bellaiche, L. Finite-temperature properties of multiferroic BiFeO3 . Phys. Rev. Lett. 99, 227602 (2007).
(
10.1103/PhysRevLett.99.227602
) / Phys. Rev. Lett. by IA Kornev (2007) -
Albrecht, D. et al. Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study. Phys. Rev. B 81, 140401 (R) (2010).
(
10.1103/PhysRevB.81.140401
) / Phys. Rev. B by D Albrecht (2010)
Dates
Type | When |
---|---|
Created | 8 years, 4 months ago (April 3, 2017, 5:30 a.m.) |
Deposited | 2 years, 7 months ago (Dec. 22, 2022, 7:12 p.m.) |
Indexed | 3 days, 11 hours ago (Aug. 19, 2025, 6:54 a.m.) |
Issued | 8 years, 4 months ago (April 3, 2017) |
Published | 8 years, 4 months ago (April 3, 2017) |
Published Online | 8 years, 4 months ago (April 3, 2017) |
@article{Boyn_2017, title={Learning through ferroelectric domain dynamics in solid-state synapses}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms14736}, DOI={10.1038/ncomms14736}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Boyn, Sören and Grollier, Julie and Lecerf, Gwendal and Xu, Bin and Locatelli, Nicolas and Fusil, Stéphane and Girod, Stéphanie and Carrétéro, Cécile and Garcia, Karin and Xavier, Stéphane and Tomas, Jean and Bellaiche, Laurent and Bibes, Manuel and Barthélémy, Agnès and Saïghi, Sylvain and Garcia, Vincent}, year={2017}, month=apr }