Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractIn eukaryotic cells, one-third of all proteins must be transported across or inserted into the endoplasmic reticulum (ER) membrane by the ER protein translocon. The translocon-associated protein (TRAP) complex is an integral component of the translocon, assisting the Sec61 protein-conducting channel by regulating signal sequence and transmembrane helix insertion in a substrate-dependent manner. Here we use cryo-electron tomography (CET) to study the structure of the native translocon in evolutionarily divergent organisms and disease-linked TRAP mutant fibroblasts from human patients. The structural differences detected by subtomogram analysis form a basis for dissecting the molecular organization of the TRAP complex. We assign positions to the four TRAP subunits within the complex, providing insights into their individual functions. The revealed molecular architecture of a central translocon component advances our understanding of membrane protein biogenesis and sheds light on the role of TRAP in human congenital disorders of glycosylation.

Bibliography

Pfeffer, S., Dudek, J., Schaffer, M., Ng, B. G., Albert, S., Plitzko, J. M., Baumeister, W., Zimmermann, R., Freeze, H. H., Engel, B. D., & Förster, F. (2017). Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 8(1).

Authors 11
  1. Stefan Pfeffer (first)
  2. Johanna Dudek (additional)
  3. Miroslava Schaffer (additional)
  4. Bobby G. Ng (additional)
  5. Sahradha Albert (additional)
  6. Jürgen M. Plitzko (additional)
  7. Wolfgang Baumeister (additional)
  8. Richard Zimmermann (additional)
  9. Hudson H. Freeze (additional)
  10. Benjamin D. Engel (additional)
  11. Friedrich Förster (additional)
References 43 Referenced 150
  1. Shen, K., Arslan, S., Akopian, D., Ha, T. & Shan, S. O. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271–275 (2012). (10.1038/nature11726) / Nature by K Shen (2012)
  2. Wang, L. & Dobberstein, B. Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett. 457, 316–322 (1999). (10.1016/S0014-5793(99)01075-3) / FEBS Lett. by L Wang (1999)
  3. Prehn, S. et al. Structure and biosynthesis of the signal-sequence receptor. Eur. J. Biochem. 188, 439–445 (1990). (10.1111/j.1432-1033.1990.tb15421.x) / Eur. J. Biochem. by S Prehn (1990)
  4. Hartmann, E. et al. A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur. J. Biochem. 214, 375–381 (1993). (10.1111/j.1432-1033.1993.tb17933.x) / Eur. J. Biochem. by E Hartmann (1993)
  5. Wiedmann, M., Kurzchalia, T. V., Hartmann, E. & Rapoport, T. A. A signal sequence receptor in the endoplasmic reticulum membrane. Nature 328, 830–833 (1987). (10.1038/328830a0) / Nature by M Wiedmann (1987)
  6. Gorlich, D. et al. The signal sequence receptor has a second subunit and is part of a translocation complex in the endoplasmic reticulum as probed by bifunctional reagents. J. Cell Biol. 111, 2283–2294 (1990). (10.1083/jcb.111.6.2283) / J. Cell Biol. by D Gorlich (1990)
  7. Snapp, E. L., Reinhart, G. A., Bogert, B. A., Lippincott-Schwartz, J. & Hegde, R. S. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. J. Cell Biol. 164, 997–1007 (2004). (10.1083/jcb.200312079) / J. Cell Biol. by EL Snapp (2004)
  8. Conti, B. J., Devaraneni, P. K., Yang, Z., David, L. L. & Skach, W. R. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol. Cell 58, 269–283 (2015). (10.1016/j.molcel.2015.02.018) / Mol. Cell by BJ Conti (2015)
  9. Shibatani, T., David, L. L., McCormack, A. L., Frueh, K. & Skach, W. R. Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44, 5982–5992 (2005). (10.1021/bi047328f) / Biochemistry by T Shibatani (2005)
  10. Dejgaard, K. et al. Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J. Proteome Res. 9, 1763–1771 (2010). (10.1021/pr900900x) / J. Proteome Res. by K Dejgaard (2010)
  11. Gorlich, D., Hartmann, E., Prehn, S. & Rapoport, T. A. A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357, 47–52 (1992). (10.1038/357047a0) / Nature by D Gorlich (1992)
  12. Wiedmann, M., Goerlich, D., Hartmann, E., Kurzchalia, T. V. & Rapoport, T. A. Photocrosslinking demonstrates proximity of a 34 kDa membrane protein to different portions of preprolactin during translocation through the endoplasmic reticulum. FEBS Lett. 257, 263–268 (1989). (10.1016/0014-5793(89)81549-2) / FEBS Lett. by M Wiedmann (1989)
  13. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003). (10.1083/jcb.200210095) / J. Cell Biol. by RD Fons (2003)
  14. Sommer, N., Junne, T., Kalies, K. U., Spiess, M. & Hartmann, E. TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochim. Biophys. Acta 1833, 3104–3111 (2013). (10.1016/j.bbamcr.2013.08.018) / Biochim. Biophys. Acta by N Sommer (2013)
  15. Ng, B. G. et al. Expanding the molecular and clinical phenotype of SSR4-CDG. Hum. Mutat. 36, 1048–1051 (2015). (10.1002/humu.22856) / Hum. Mutat. by BG Ng (2015)
  16. Losfeld, M. E. et al. A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum. Mol. Genet. 23, 1602–1605 (2014). (10.1093/hmg/ddt550) / Hum. Mol. Genet. by ME Losfeld (2014)
  17. Menetret, J. F. et al. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16, 1126–1137 (2008). (10.1016/j.str.2008.05.003) / Structure by JF Menetret (2008)
  18. Pfeffer, S. et al. Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nat. Commun. 5, 3072 (2014). (10.1038/ncomms4072) / Nat. Commun. by S Pfeffer (2014)
  19. Voorhees, R. M., Fernandez, I. S., Scheres, S. H. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4A resolution. Cell 157, 1632–1643 (2014). (10.1016/j.cell.2014.05.024) / Cell by RM Voorhees (2014)
  20. Menetret, J. F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445–457 (2005). (10.1016/j.jmb.2005.02.053) / J. Mol. Biol. by JF Menetret (2005)
  21. Briggs, J. A. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23, 261–267 (2013). (10.1016/j.sbi.2013.02.003) / Curr. Opin. Struct. Biol. by JA Briggs (2013)
  22. Pfeffer, S. et al. Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. Structure 20, 1508–1518 (2012). (10.1016/j.str.2012.06.010) / Structure by S Pfeffer (2012)
  23. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016). (10.1126/science.aad8857) / Science by J Mahamid (2016)
  24. Pfeffer, S., Dudek, J., Zimmermann, R. & Forster, F. Organization of the native ribosome-translocon complex at the mammalian endoplasmic reticulum membrane. Biochim. Biophys. Acta 1860, 2122–2129 (2016). (10.1016/j.bbagen.2016.06.024) / Biochim. Biophys. Acta by S Pfeffer (2016)
  25. Pfeffer, S. et al. Structure of the native Sec61 protein-conducting channel. Nat. Commun. 6, 8403 (2015). (10.1038/ncomms9403) / Nat. Commun. by S Pfeffer (2015)
  26. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988). (10.1111/j.1432-1033.1988.tb14150.x) / Eur. J. Biochem. by G von Heijne (1988)
  27. Sauri, A., McCormick, P. J., Johnson, A. E. & Mingarro, I. Sec61alpha and TRAM are sequentially adjacent to a nascent viral membrane protein during its ER integration. J. Mol. Biol. 366, 366–374 (2007). (10.1016/j.jmb.2006.11.052) / J. Mol. Biol. by A Sauri (2007)
  28. Schaffer, M. et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol, 197, 73–82 (2017). (10.1016/j.jsb.2016.07.010) / J. Struct. Biol, by M Schaffer (2017)
  29. Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA 109, 4449–4454 (2012). (10.1073/pnas.1201333109) / Proc. Natl Acad. Sci. USA by A Rigort (2012)
  30. Engel, B. D. et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. Elife 4, e04889 (2015). (10.7554/eLife.04889) / Elife by BD Engel (2015)
  31. Engel, B. D. et al. In situ structural analysis of Golgi intracisternal protein arrays. Proc. Natl Acad. Sci. USA 112, 11264–11269 (2015). (10.1073/pnas.1515337112) / Proc. Natl Acad. Sci. USA by BD Engel (2015)
  32. Umen, J. G. & Goodenough, U. W. Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev. 15, 1652–1661 (2001). (10.1101/gad.892101) / Genes Dev. by JG Umen (2001)
  33. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). (10.1016/j.jsb.2005.07.007) / J. Struct. Biol. by DN Mastronarde (2005)
  34. Schaffer, M. et al. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc. 5, e1575 (2015). (10.21769/BioProtoc.1575) / Bio Protoc. by M Schaffer (2015)
  35. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013). (10.1038/nmeth.2472) / Nat. Methods by X Li (2013)
  36. Hrabe, T. et al. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012). (10.1016/j.jsb.2011.12.003) / J. Struct. Biol. by T Hrabe (2012)
  37. Eibauer, M. et al. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. J. Struct. Biol. 180, 488–496 (2012). (10.1016/j.jsb.2012.09.008) / J. Struct. Biol. by M Eibauer (2012)
  38. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). (10.1006/jsbi.1996.0013) / J. Struct. Biol. by JR Kremer (1996)
  39. Anger, A. M. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013). (10.1038/nature12104) / Nature by AM Anger (2013)
  40. Armache, J. P. et al. Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc. Natl Acad. Sci. USA 107, 19754–19759 (2010). (10.1073/pnas.1010005107) / Proc. Natl Acad. Sci. USA by JP Armache (2010)
  41. Forster, F., Pruggnaller, S., Seybert, A. & Frangakis, A. S. Classification of cryo-electron sub-tomograms using constrained correlation. J. Struct. Biol. 161, 276–286 (2008). (10.1016/j.jsb.2007.07.006) / J. Struct. Biol. by F Forster (2008)
  42. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007). (10.1016/j.jsb.2006.06.010) / J. Struct. Biol. by TD Goddard (2007)
  43. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J. J. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186, 49–61 (2014). (10.1016/j.jsb.2014.02.015) / J. Struct. Biol. by A Martinez-Sanchez (2014)
Dates
Type When
Created 8 years, 6 months ago (Feb. 20, 2017, 5:30 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 6:52 p.m.)
Indexed 1 month ago (July 19, 2025, 11:43 p.m.)
Issued 8 years, 6 months ago (Feb. 20, 2017)
Published 8 years, 6 months ago (Feb. 20, 2017)
Published Online 8 years, 6 months ago (Feb. 20, 2017)
Funders 0

None

@article{Pfeffer_2017, title={Dissecting the molecular organization of the translocon-associated protein complex}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms14516}, DOI={10.1038/ncomms14516}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Pfeffer, Stefan and Dudek, Johanna and Schaffer, Miroslava and Ng, Bobby G. and Albert, Sahradha and Plitzko, Jürgen M. and Baumeister, Wolfgang and Zimmermann, Richard and Freeze, Hudson H. and Engel, Benjamin D. and Förster, Friedrich}, year={2017}, month=feb }