Crossref
journal-article
Springer Science and Business Media LLC
Nature Communications (297)
References
58
Referenced
1,332
- US Department of Energy. 2010 Fuel Cell Technologies Market Report, 2011 (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/2010_market_report.pdf), 13–14.
-
Service, R. F. Hydrogen cars: fad or the future? Science 324, 1257–1259 (2009).
(
10.1126/science.324_1257
) / Science by RF Service (2009) -
Schlapbach, L. Technology: hydrogen-fuelled vehicles. Nature 460, 809–811 (2009).
(
10.1038/460809a
) / Nature by L Schlapbach (2009) -
Tollefson, J. Hydrogen vehicles: fuel of the future? Nature 464, 1262–1264 (2010).
(
10.1038/4641262a
) / Nature by J Tollefson (2010) -
James, B. D., Kalinoski,, J. A. & Baum, K. N. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/dti_80kwW_fc_system_cost_analysis_report_2010.pdf) 2010.
(
10.2172/1218888
) - Johnson Matthey, Market data charts (http://www.platinum.matthey.com/publications/market-data-charts/platinum-charts) 2011.
- O'Hayre, R. P., Cha, S.- W., Colella, W. G. & Prinz, F. B. Fuel cell fundamentals 2nd edn, (John Wiley, 2009).
- Thompsett, D. in Proton Exchange Membrane Fuel Cells (eds David P. Wilkinson et al.) 1–60 (CRC, 2009).
-
Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D. & Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161, 1002–1011 (2006).
(
10.1016/j.jpowsour.2006.05.033
) / J. Power Sources by MK Debe (2006) -
Gasteiger, H. A. & Markovic, N. M. Just a dream—or future reality? Science 324, 48–49 (2009).
(
10.1126/science.1172083
) / Science by HA Gasteiger (2009) -
Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).
(
10.1038/nchem.623
) / Nature Chem. by P Strasser (2010) -
Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2010).
(
10.1021/nl102369k
) / Nano Lett. by C Wang (2010) -
Wu, J. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010).
(
10.1021/ja100571h
) / J. Am. Chem. Soc. by J Wu (2010) -
Zhou, W.- P. et al. Gram-scale-synthesized Pd2Co-supported Pt monolayer electrocatalysts for oxygen reduction reaction. J. Phys. Chem. C 114, 8950–8957 (2010).
(
10.1021/jp100283p
) / J. Phys. Chem. C by W-P Zhou (2010) -
Morozan, A., Jousselme, B. & Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238–1254 (2011).
(
10.1039/c0ee00601g
) / Energy Environ. Sci. by A Morozan (2011) -
Jasinski, R. A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964).
(
10.1038/2011212a0
) / Nature by R Jasinski (1964) -
Jahnke, H., Schönborn, M. & Zimmermann, G. Organic dyestuffs as catalysts for fuel cells. Top. Curr. Chem. 61, 133–181 (1976).
(
10.1007/BFb0046059
) / Top. Curr. Chem. by H Jahnke (1976) - Dodelet, J.- P. in N4-Macrocyclic Metal Complexes (eds José H. Zagal, Fethi Bedioui, & Jean-Pol Dodelet) 83–147 (Springer, 2006).
-
Yoshikawa, S. et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723–1729 (1998).
(
10.1126/science.280.5370.1723
) / Science by S Yoshikawa (1998) -
Boulatov, R., Collman, J. P., Shiryaeva, I. M. & Sunderland, C. J. Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB. J. Am. Chem. Soc. 124, 11923–11935 (2002).
(
10.1021/ja026179q
) / J. Am. Chem. Soc. by R Boulatov (2002) - Boulatov, R. in N4-Macrocyclic Metal Complexes (eds José H. Zagal, Fethi Bedioui & Jean-Pol Dodelet) 1–40 (Springer, 2006).
-
Popovic, D. M., Leontyev, I. V., Beech, D. G. & Stuchebrukhov, A. A. Similarity of cytochrome c oxidases in different organisms. Proteins Struct. Funct. Bioinf. 78, 2691–2698 (2010).
(
10.1002/prot.22783
) / Proteins Struct. Funct. Bioinf. by DM Popovic (2010) -
Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011).
(
10.1039/C0EE00011F
) / Energy Environ. Sci. by F Jaouen (2011) -
Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).
(
10.1126/science.1170051
) / Science by M Lefevre (2009) -
Chung, H. T. et al. Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun. 12, 1792–1795 (2010).
(
10.1016/j.elecom.2010.10.027
) / Electrochem. Commun. by HT Chung (2010) -
Wu, L. et al. Pt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells. Chem. Commun. 46, 6377–6379 (2010).
(
10.1039/c0cc01597k
) / Chem. Commun. by L Wu (2010) -
Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011).
(
10.1126/science.1200832
) / Science by G Wu (2011) -
Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).
(
10.1016/j.apcatb.2004.06.021
) / Appl. Catal. B by HA Gasteiger (2005) -
Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010).
(
10.1021/jz100553m
) / J. Phys. Chem. Lett. by FT Wagner (2010) - US Department of Energy. Technical Plan: Fuel Cells (http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf). 24. 2007.
-
Jaouen, F., Lefèvre, M., Dodelet, J.- P. & Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J. Phys. Chem. B 110, 5553–5558 (2006).
(
10.1021/jp057135h
) / J. Phys. Chem. B by F Jaouen (2006) -
Jaouen, F. et al. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 1, 1623–1639 (2009).
(
10.1021/am900219g
) / ACS Appl. Mater. Interfaces by F Jaouen (2009) -
Ignaszak, A., Ye, S. & Gyenge, E. A Study of the catalytic interface for O2 electroreduction on Pt: the interaction between carbon support meso/microstructure and ionomer (Nafion) distribution. J. Phys. Chem. C 113, 298–307 (2008).
(
10.1021/jp8060398
) / J. Phys. Chem. C by A Ignaszak (2008) -
Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1–24 (2009).
(
10.1016/j.apcatb.2008.09.030
) / Appl. Catal., B by E Antolini (2009) -
Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).
(
10.1073/pnas.0602439103
) / Proc. Natl Acad. Sci. USA by KS Park (2006) -
Wu, H., Zhou, W. & Yildirim, T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc. 129, 5314–5315 (2007).
(
10.1021/ja0691932
) / J. Am. Chem. Soc. by H Wu (2007) -
Jaouen, F., Marcotte, S., Dodelet, J.- P. & Lindbergh, G. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J. Phys. Chem. B 107, 1376–1386 (2003).
(
10.1021/jp021634q
) / J. Phys. Chem. B by F Jaouen (2003) -
Charreteur, F., Jaouen, F., Ruggeri, S. & Dodelet, J.- P. Fe/N/Cnon-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 53, 2925–2938 (2008).
(
10.1016/j.electacta.2007.11.002
) / Electrochim. Acta by F Charreteur (2008) -
Charreteur, F., Ruggeri, S., Jaouen, F. & Dodelet, J. P. Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content. Electrochim. Acta 53, 6881–6889 (2008).
(
10.1016/j.electacta.2007.12.051
) / Electrochim. Acta by F Charreteur (2008) -
Phan, A. et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2009).
(
10.1021/ar900116g
) / Acc. Chem. Res. by A Phan (2009) -
Czaja, A. U., Trukhan, N. & Muller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).
(
10.1039/b804680h
) / Chem. Soc. Rev. by AU Czaja (2009) -
Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003).
(
10.1126/science.1083440
) / Science by NL Rosi (2003) -
Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chem. 1, 705–710 (2009).
(
10.1038/nchem.402
) / Nature Chem. by JA Hurd (2009) -
Hu, J., Wang, H., Gao, Q. & Guo, H. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon 48, 3599–3606 (2010).
(
10.1016/j.carbon.2010.06.008
) / Carbon by J Hu (2010) -
Goenaga, G., Ma, S., Yuan, S. & Liu, D.- J. NewApproaches to Non-PGM electrocatalysts using porous framework materials. ECS Trans. 33, 579–586 (2010).
(
10.1149/1.3484554
) / ECS Trans. by G Goenaga (2010) -
Ma, S., Goenaga, G. A., Call, A. V. & Liu, D.- J. CobaltImidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. Eur. J. 17, 2063–2067 (2011).
(
10.1002/chem.201003080
) / Chem. Eur. J. by S Ma (2011) - US Department of Energy. Research and Development of Fuel Cells for Stationary and Transportation Applications: Topic 5 Catalysts/Electrodes (www.fedconnect.net/FedConnect/?doc=DE-FOA-0000360&agency=DOE). 22 2010.
-
Tan, J. C., Bennett, T. D. & Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc. Natl Acad. Sci. USA 107, 9938–9943 (2010).
(
10.1073/pnas.1003205107
) / Proc. Natl Acad. Sci. USA by JC Tan (2010) -
Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metalorganic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009).
(
10.1021/ja908415z
) / J. Am. Chem. Soc. by KW Chapman (2009) - Bogdanoff, P. et al. Probing structural effects of pyrolysed CoTMPP-based electrocatalysts for oxygen reduction via new preparation strategies. J. New Mater. Electrochem. Syst. 7, 85–92 (2004). / J. New Mater. Electrochem. Syst. by P Bogdanoff (2004)
-
Koslowski, U. I., Abs-Wurmbach, I., Fiechter, S. & Bogdanoff, P. Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: A correlation of kinetic current density with the site density of FeN4 centers. J. Phys. Chem. C 112, 15356–15366 (2008).
(
10.1021/jp802456e
) / J. Phys. Chem. C by UI Koslowski (2008) -
Ziegelbauer, J. M. et al. Direct spectroscopic observation of the structural origin of peroxide generation from co-based pyrolyzed porphyrins for ORR applications. J. Phys. Chem. C 112, 8839–8849 (2008).
(
10.1021/jp8001564
) / J. Phys. Chem. C by JM Ziegelbauer (2008) -
Garsuch, A. et al. Oxygen reduction behavior of highly porous non-noble metal catalysts prepared by a template-assisted synthesis route. J. Electrochem. Soc. 155, B236–B243 (2008).
(
10.1149/1.2825168
) / J. Electrochem. Soc. by A Garsuch (2008) -
Garsuch, A., MacIntyre, K., Michaud, X., Stevens, D. A. & Dahn, J. R. Fuel cell studies on a non-noble metal catalyst prepared by a template-assisted synthesis route. J. Electrochem. Soc. 155, B953–B957 (2008).
(
10.1149/1.2949092
) / J. Electrochem. Soc. by A Garsuch (2008) - O'Hanlon, J. F. A User?s Guide to Vacuum Technology. (John Wiley, 2004).
-
Wu, G. et al. Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299–1311 (2009).
(
10.1149/1.3210685
) / ECS Trans. by G Wu (2009) -
Gasteiger, H. A., Panels, J. E. & Yan, S. G. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 127, 162–171 (2004).
(
10.1016/j.jpowsour.2003.09.013
) / J. Power Sources by HA Gasteiger (2004) -
Neyerlin, K. C., Gu, W., Jorne, J. & Gasteiger, H. A. Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154, B631–B635 (2007).
(
10.1149/1.2733987
) / J. Electrochem. Soc. by KC Neyerlin (2007)
@article{Proietti_2011, title={Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells}, volume={2}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1427}, DOI={10.1038/ncomms1427}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Proietti, Eric and Jaouen, Frédéric and Lefèvre, Michel and Larouche, Nicholas and Tian, Juan and Herranz, Juan and Dodelet, Jean-Pol}, year={2011}, month=aug }