Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Authors 7
  1. Eric Proietti (first)
  2. Frédéric Jaouen (additional)
  3. Michel Lefèvre (additional)
  4. Nicholas Larouche (additional)
  5. Juan Tian (additional)
  6. Juan Herranz (additional)
  7. Jean-Pol Dodelet (additional)
References 58 Referenced 1,332
  1. US Department of Energy. 2010 Fuel Cell Technologies Market Report, 2011 (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/2010_market_report.pdf), 13–14.
  2. Service, R. F. Hydrogen cars: fad or the future? Science 324, 1257–1259 (2009). (10.1126/science.324_1257) / Science by RF Service (2009)
  3. Schlapbach, L. Technology: hydrogen-fuelled vehicles. Nature 460, 809–811 (2009). (10.1038/460809a) / Nature by L Schlapbach (2009)
  4. Tollefson, J. Hydrogen vehicles: fuel of the future? Nature 464, 1262–1264 (2010). (10.1038/4641262a) / Nature by J Tollefson (2010)
  5. James, B. D., Kalinoski,, J. A. & Baum, K. N. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update (http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/dti_80kwW_fc_system_cost_analysis_report_2010.pdf) 2010. (10.2172/1218888)
  6. Johnson Matthey, Market data charts (http://www.platinum.matthey.com/publications/market-data-charts/platinum-charts) 2011.
  7. O'Hayre, R. P., Cha, S.- W., Colella, W. G. & Prinz, F. B. Fuel cell fundamentals 2nd edn, (John Wiley, 2009).
  8. Thompsett, D. in Proton Exchange Membrane Fuel Cells (eds David P. Wilkinson et al.) 1–60 (CRC, 2009).
  9. Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D. & Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 161, 1002–1011 (2006). (10.1016/j.jpowsour.2006.05.033) / J. Power Sources by MK Debe (2006)
  10. Gasteiger, H. A. & Markovic, N. M. Just a dream—or future reality? Science 324, 48–49 (2009). (10.1126/science.1172083) / Science by HA Gasteiger (2009)
  11. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010). (10.1038/nchem.623) / Nature Chem. by P Strasser (2010)
  12. Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2010). (10.1021/nl102369k) / Nano Lett. by C Wang (2010)
  13. Wu, J. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010). (10.1021/ja100571h) / J. Am. Chem. Soc. by J Wu (2010)
  14. Zhou, W.- P. et al. Gram-scale-synthesized Pd2Co-supported Pt monolayer electrocatalysts for oxygen reduction reaction. J. Phys. Chem. C 114, 8950–8957 (2010). (10.1021/jp100283p) / J. Phys. Chem. C by W-P Zhou (2010)
  15. Morozan, A., Jousselme, B. & Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238–1254 (2011). (10.1039/c0ee00601g) / Energy Environ. Sci. by A Morozan (2011)
  16. Jasinski, R. A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964). (10.1038/2011212a0) / Nature by R Jasinski (1964)
  17. Jahnke, H., Schönborn, M. & Zimmermann, G. Organic dyestuffs as catalysts for fuel cells. Top. Curr. Chem. 61, 133–181 (1976). (10.1007/BFb0046059) / Top. Curr. Chem. by H Jahnke (1976)
  18. Dodelet, J.- P. in N4-Macrocyclic Metal Complexes (eds José H. Zagal, Fethi Bedioui, & Jean-Pol Dodelet) 83–147 (Springer, 2006).
  19. Yoshikawa, S. et al. Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280, 1723–1729 (1998). (10.1126/science.280.5370.1723) / Science by S Yoshikawa (1998)
  20. Boulatov, R., Collman, J. P., Shiryaeva, I. M. & Sunderland, C. J. Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB. J. Am. Chem. Soc. 124, 11923–11935 (2002). (10.1021/ja026179q) / J. Am. Chem. Soc. by R Boulatov (2002)
  21. Boulatov, R. in N4-Macrocyclic Metal Complexes (eds José H. Zagal, Fethi Bedioui & Jean-Pol Dodelet) 1–40 (Springer, 2006).
  22. Popovic, D. M., Leontyev, I. V., Beech, D. G. & Stuchebrukhov, A. A. Similarity of cytochrome c oxidases in different organisms. Proteins Struct. Funct. Bioinf. 78, 2691–2698 (2010). (10.1002/prot.22783) / Proteins Struct. Funct. Bioinf. by DM Popovic (2010)
  23. Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011). (10.1039/C0EE00011F) / Energy Environ. Sci. by F Jaouen (2011)
  24. Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009). (10.1126/science.1170051) / Science by M Lefevre (2009)
  25. Chung, H. T. et al. Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun. 12, 1792–1795 (2010). (10.1016/j.elecom.2010.10.027) / Electrochem. Commun. by HT Chung (2010)
  26. Wu, L. et al. Pt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells. Chem. Commun. 46, 6377–6379 (2010). (10.1039/c0cc01597k) / Chem. Commun. by L Wu (2010)
  27. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). (10.1126/science.1200832) / Science by G Wu (2011)
  28. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005). (10.1016/j.apcatb.2004.06.021) / Appl. Catal. B by HA Gasteiger (2005)
  29. Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010). (10.1021/jz100553m) / J. Phys. Chem. Lett. by FT Wagner (2010)
  30. US Department of Energy. Technical Plan: Fuel Cells (http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf). 24. 2007.
  31. Jaouen, F., Lefèvre, M., Dodelet, J.- P. & Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J. Phys. Chem. B 110, 5553–5558 (2006). (10.1021/jp057135h) / J. Phys. Chem. B by F Jaouen (2006)
  32. Jaouen, F. et al. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 1, 1623–1639 (2009). (10.1021/am900219g) / ACS Appl. Mater. Interfaces by F Jaouen (2009)
  33. Ignaszak, A., Ye, S. & Gyenge, E. A Study of the catalytic interface for O2 electroreduction on Pt: the interaction between carbon support meso/microstructure and ionomer (Nafion) distribution. J. Phys. Chem. C 113, 298–307 (2008). (10.1021/jp8060398) / J. Phys. Chem. C by A Ignaszak (2008)
  34. Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B 88, 1–24 (2009). (10.1016/j.apcatb.2008.09.030) / Appl. Catal., B by E Antolini (2009)
  35. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006). (10.1073/pnas.0602439103) / Proc. Natl Acad. Sci. USA by KS Park (2006)
  36. Wu, H., Zhou, W. & Yildirim, T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc. 129, 5314–5315 (2007). (10.1021/ja0691932) / J. Am. Chem. Soc. by H Wu (2007)
  37. Jaouen, F., Marcotte, S., Dodelet, J.- P. & Lindbergh, G. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J. Phys. Chem. B 107, 1376–1386 (2003). (10.1021/jp021634q) / J. Phys. Chem. B by F Jaouen (2003)
  38. Charreteur, F., Jaouen, F., Ruggeri, S. & Dodelet, J.- P. Fe/N/Cnon-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 53, 2925–2938 (2008). (10.1016/j.electacta.2007.11.002) / Electrochim. Acta by F Charreteur (2008)
  39. Charreteur, F., Ruggeri, S., Jaouen, F. & Dodelet, J. P. Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content. Electrochim. Acta 53, 6881–6889 (2008). (10.1016/j.electacta.2007.12.051) / Electrochim. Acta by F Charreteur (2008)
  40. Phan, A. et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2009). (10.1021/ar900116g) / Acc. Chem. Res. by A Phan (2009)
  41. Czaja, A. U., Trukhan, N. & Muller, U. Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009). (10.1039/b804680h) / Chem. Soc. Rev. by AU Czaja (2009)
  42. Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003). (10.1126/science.1083440) / Science by NL Rosi (2003)
  43. Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chem. 1, 705–710 (2009). (10.1038/nchem.402) / Nature Chem. by JA Hurd (2009)
  44. Hu, J., Wang, H., Gao, Q. & Guo, H. Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon 48, 3599–3606 (2010). (10.1016/j.carbon.2010.06.008) / Carbon by J Hu (2010)
  45. Goenaga, G., Ma, S., Yuan, S. & Liu, D.- J. NewApproaches to Non-PGM electrocatalysts using porous framework materials. ECS Trans. 33, 579–586 (2010). (10.1149/1.3484554) / ECS Trans. by G Goenaga (2010)
  46. Ma, S., Goenaga, G. A., Call, A. V. & Liu, D.- J. CobaltImidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. Eur. J. 17, 2063–2067 (2011). (10.1002/chem.201003080) / Chem. Eur. J. by S Ma (2011)
  47. US Department of Energy. Research and Development of Fuel Cells for Stationary and Transportation Applications: Topic 5 Catalysts/Electrodes (www.fedconnect.net/FedConnect/?doc=DE-FOA-0000360&agency=DOE). 22 2010.
  48. Tan, J. C., Bennett, T. D. & Cheetham, A. K. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks. Proc. Natl Acad. Sci. USA 107, 9938–9943 (2010). (10.1073/pnas.1003205107) / Proc. Natl Acad. Sci. USA by JC Tan (2010)
  49. Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metalorganic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009). (10.1021/ja908415z) / J. Am. Chem. Soc. by KW Chapman (2009)
  50. Bogdanoff, P. et al. Probing structural effects of pyrolysed CoTMPP-based electrocatalysts for oxygen reduction via new preparation strategies. J. New Mater. Electrochem. Syst. 7, 85–92 (2004). / J. New Mater. Electrochem. Syst. by P Bogdanoff (2004)
  51. Koslowski, U. I., Abs-Wurmbach, I., Fiechter, S. & Bogdanoff, P. Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: A correlation of kinetic current density with the site density of FeN4 centers. J. Phys. Chem. C 112, 15356–15366 (2008). (10.1021/jp802456e) / J. Phys. Chem. C by UI Koslowski (2008)
  52. Ziegelbauer, J. M. et al. Direct spectroscopic observation of the structural origin of peroxide generation from co-based pyrolyzed porphyrins for ORR applications. J. Phys. Chem. C 112, 8839–8849 (2008). (10.1021/jp8001564) / J. Phys. Chem. C by JM Ziegelbauer (2008)
  53. Garsuch, A. et al. Oxygen reduction behavior of highly porous non-noble metal catalysts prepared by a template-assisted synthesis route. J. Electrochem. Soc. 155, B236–B243 (2008). (10.1149/1.2825168) / J. Electrochem. Soc. by A Garsuch (2008)
  54. Garsuch, A., MacIntyre, K., Michaud, X., Stevens, D. A. & Dahn, J. R. Fuel cell studies on a non-noble metal catalyst prepared by a template-assisted synthesis route. J. Electrochem. Soc. 155, B953–B957 (2008). (10.1149/1.2949092) / J. Electrochem. Soc. by A Garsuch (2008)
  55. O'Hanlon, J. F. A User?s Guide to Vacuum Technology. (John Wiley, 2004).
  56. Wu, G. et al. Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299–1311 (2009). (10.1149/1.3210685) / ECS Trans. by G Wu (2009)
  57. Gasteiger, H. A., Panels, J. E. & Yan, S. G. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 127, 162–171 (2004). (10.1016/j.jpowsour.2003.09.013) / J. Power Sources by HA Gasteiger (2004)
  58. Neyerlin, K. C., Gu, W., Jorne, J. & Gasteiger, H. A. Study of the exchange current density for the hydrogen oxidation and evolution reactions. J. Electrochem. Soc. 154, B631–B635 (2007). (10.1149/1.2733987) / J. Electrochem. Soc. by KC Neyerlin (2007)
Dates
Type When
Created 14 years ago (Aug. 2, 2011, 5:29 a.m.)
Deposited 1 year, 4 months ago (April 9, 2024, 9:17 a.m.)
Indexed 1 day, 13 hours ago (Aug. 30, 2025, 12:55 p.m.)
Issued 14 years ago (Aug. 2, 2011)
Published 14 years ago (Aug. 2, 2011)
Published Online 14 years ago (Aug. 2, 2011)
Funders 0

None

@article{Proietti_2011, title={Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells}, volume={2}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1427}, DOI={10.1038/ncomms1427}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Proietti, Eric and Jaouen, Frédéric and Lefèvre, Michel and Larouche, Nicholas and Tian, Juan and Herranz, Juan and Dodelet, Jean-Pol}, year={2011}, month=aug }