Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMagnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.

Bibliography

Kosub, T., Kopte, M., Hühne, R., Appel, P., Shields, B., Maletinsky, P., Hübner, R., Liedke, M. O., Fassbender, J., Schmidt, O. G., & Makarov, D. (2017). Purely antiferromagnetic magnetoelectric random access memory. Nature Communications, 8(1).

Authors 11
  1. Tobias Kosub (first)
  2. Martin Kopte (additional)
  3. Ruben Hühne (additional)
  4. Patrick Appel (additional)
  5. Brendan Shields (additional)
  6. Patrick Maletinsky (additional)
  7. René Hübner (additional)
  8. Maciej Oskar Liedke (additional)
  9. Jürgen Fassbender (additional)
  10. Oliver G. Schmidt (additional)
  11. Denys Makarov (additional)
References 36 Referenced 258
  1. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013). (10.1038/nnano.2012.240) / Nat. Nanotechnol. by JJ Yang (2013)
  2. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechno. 11, 231–241 (2016). (10.1038/nnano.2016.18) / Nat. Nanotechno. by T Jungwirth (2016)
  3. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). (10.1126/science.aab1031) / Science by P Wadley (2016)
  4. Ashida, T. et al. Isothermal electric switching of magnetization in Cr2O3/Co thin film system. Appl. Phys. Lett. 106, 132407 (2015). (10.1063/1.4916826) / Appl. Phys. Lett. by T Ashida (2015)
  5. Toyoki, K. et al. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr2O3/Pt stacked films. Appl. Phys. Lett. 106, 162404 (2015). (10.1063/1.4918940) / Appl. Phys. Lett. by K Toyoki (2015)
  6. Heron, J. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014). (10.1038/nature14004) / Nature by J Heron (2014)
  7. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010). (10.1038/nmat2785) / Nat. Mater. by X He (2010)
  8. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015). (10.1038/nnano.2015.22) / Nat. Nanotechnol. by F Matsukura (2015)
  9. Toyoki, K. et al. Switching of perpendicular exchange bias in Pt/Co/Pt/α-Cr2O3/Pt layered structure using magneto-electric effect. J. Appl. Phys. 117, 17D902 (2015). (10.1063/1.4906322) / J. Appl. Phys. by K Toyoki (2015)
  10. Kosub, T., Kopte, M., Radu, F., Schmidt, O. G. & Makarov, D. All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys. Rev. Lett. 115, 097201 (2015). (10.1103/PhysRevLett.115.097201) / Phys. Rev. Lett. by T Kosub (2015)
  11. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014). (10.1038/nmat3861) / Nat. Mater. by X Marti (2014)
  12. Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3 . Nat. Mater. 9, 975–979 (2010). (10.1038/nmat2899) / Nat. Mater. by P Rovillain (2010)
  13. Ashida, T. et al. Observation of magnetoelectric effect in Cr2O3/Pt/Co thin film system. Appl. Phys. Lett. 104, 152409 (2014). (10.1063/1.4871515) / Appl. Phys. Lett. by T Ashida (2014)
  14. Iwata, N., Kuroda, T. & Yamamoto, H. Mechanism of growth of Cr2O3 thin films on (1102), (1120) and (0001) surfaces of sapphire substrates by direct current radio frequency magnetron sputtering. Jpn. J. Appl. Phys. 51, 11PG12 (2012). (10.7567/JJAP.51.11PG12) / Jpn. J. Appl. Phys. by N Iwata (2012)
  15. Fallarino, L., Berger, A. & Binek, C. Magnetic field induced switching of the antiferromagnetic order parameter in thin films of magnetoelectric chromia. Phys. Rev. B 91, 054414 (2015). (10.1103/PhysRevB.91.054414) / Phys. Rev. B by L Fallarino (2015)
  16. Belashchenko, K. D. Equilibrium magnetization at the boundary of a magnetoelectric antiferromagnet. Phys. Rev. Lett. 105, 147204 (2010). (10.1103/PhysRevLett.105.147204) / Phys. Rev. Lett. by KD Belashchenko (2010)
  17. Wu, N. et al. Imaging and control of surface magnetization domains in a magnetoelectric antiferromagnet. Phys. Rev. Lett. 106, 087202 (2011). (10.1103/PhysRevLett.106.087202) / Phys. Rev. Lett. by N Wu (2011)
  18. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123 (2005). (10.1088/0022-3727/38/8/R01) / J. Phys. D Appl. Phys. by M Fiebig (2005)
  19. Dzyaloshinskii, I. E. On the magneto-electrical effect in antiferromagents. J. Exp. Theor. Phys. 37, 881–882 (1959). / J. Exp. Theor. Phys. by IE Dzyaloshinskii (1959)
  20. Mu, S., Wysocki, A. L. & Belashchenko, K. D. Effect of substitutional doping on the Néel temperature of Cr2O3 . Phys. Rev. B 87, 054435 (2013). (10.1103/PhysRevB.87.054435) / Phys. Rev. B by S Mu (2013)
  21. Street, M. et al. Increasing the Néel temperature of magnetoelectric chromia for voltage-controlled spintronics. Appl. Phys. Lett. 104, 222402 (2014). (10.1063/1.4880938) / Appl. Phys. Lett. by M Street (2014)
  22. Shiratsuchi, Y., Fujita, T., Oikawa, H., Noutomi, H. & Nakatani, R. High perpendicular exchange bias with a unique temperature dependence in Pt/Co/α-Cr2O3(0001) thin films. Appl. Phys. Exp. 3, 113001 (2010). (10.1143/APEX.3.113001) / Appl. Phys. Exp. by Y Shiratsuchi (2010)
  23. Shiratsuchi, Y. et al. High-Temperature regeneration of perpendicular exchange bias in a Pt/Co/Pt/α-Cr2O3/Pt thin film system. Appl. Phys. Exp. 6, 123004 (2013). (10.7567/APEX.6.123004) / Appl. Phys. Exp. by Y Shiratsuchi (2013)
  24. Fallarino, L., Berger, A. & Binek, C. Giant temperature dependence of the spin reversal field in magnetoelectric chromia. Appl. Phys. Lett. 104, 022403 (2014). (10.1063/1.4861780) / Appl. Phys. Lett. by L Fallarino (2014)
  25. Nozaki, T. et al. Positive exchange bias observed in Pt-inserted Cr2O3/Co exchange coupled bilayers. Appl. Phys. Lett. 105, 212406 (2014). (10.1063/1.4902828) / Appl. Phys. Lett. by T Nozaki (2014)
  26. Shiratsuchi, Y., Nakatani, T., Kawahara, S. & Nakatani, R. Magnetic coupling at interface of ultrathin Co film and antiferromagnetic Cr2O3(0001) film. J. Appl. Phys. 106, 033903 (2009). (10.1063/1.3182802) / J. Appl. Phys. by Y Shiratsuchi (2009)
  27. Lim, S.-H. et al. Exchange bias in thin-film (Co/Pt)3/Cr2O3 multilayers. J. Magn. Magn. Mater. 321, 1955–1958 (2009). (10.1016/j.jmmm.2008.12.022) / J. Magn. Magn. Mater. by S-H Lim (2009)
  28. Sahoo, S. & Binek, C. Piezomagnetism in epitaxial Cr2O3 thin films and spintronic applications. Phil. Mag. Lett. 87, 259–268 (2007). (10.1080/09500830701253177) / Phil. Mag. Lett. by S Sahoo (2007)
  29. Shiratsuchi, Y. et al. Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system. Phys. Rev. Lett. 109, 077202 (2012). (10.1103/PhysRevLett.109.077202) / Phys. Rev. Lett. by Y Shiratsuchi (2012)
  30. Folen, V. J., Rado, G. T. & Stalder, E. W. Anisotropy of the magnetoelectric effect in Cr2O3 . Phys. Rev. Lett. 6, 607–608 (1961). (10.1103/PhysRevLett.6.607) / Phys. Rev. Lett. by VJ Folen (1961)
  31. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008). (10.1038/nature07278) / Nature by G Balasubramanian (2008)
  32. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012). (10.1038/nnano.2012.50) / Nat. Nanotechnol. by P Maletinsky (2012)
  33. Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008). (10.1038/nphys1075) / Nat. Phys. by J Taylor (2008)
  34. Halley, D. et al. Size-induced enhanced magnetoelectric effect and multiferroicity in chromium oxide nanoclusters. Nat. Commun. 5, 3167 (2014). (10.1038/ncomms4167) / Nat. Commun. by D Halley (2014)
  35. Appel, P. et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016). (10.1063/1.4952953) / Rev. Sci. Instrum. by P Appel (2016)
  36. Schoenfeld, R. S. & Harneit, W. Real time magnetic field sensing and imaging using a single spin in diamond. Phys. Rev. Lett. 106, 030802 (2011). (10.1103/PhysRevLett.106.030802) / Phys. Rev. Lett. by RS Schoenfeld (2011)
Dates
Type When
Created 8 years, 7 months ago (Jan. 3, 2017, 6 a.m.)
Deposited 2 years, 8 months ago (Dec. 22, 2022, 7:07 p.m.)
Indexed 2 days, 8 hours ago (Aug. 23, 2025, 9:54 p.m.)
Issued 8 years, 7 months ago (Jan. 3, 2017)
Published 8 years, 7 months ago (Jan. 3, 2017)
Published Online 8 years, 7 months ago (Jan. 3, 2017)
Funders 0

None

@article{Kosub_2017, title={Purely antiferromagnetic magnetoelectric random access memory}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13985}, DOI={10.1038/ncomms13985}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Kosub, Tobias and Kopte, Martin and Hühne, Ruben and Appel, Patrick and Shields, Brendan and Maletinsky, Patrick and Hübner, René and Liedke, Maciej Oskar and Fassbender, Jürgen and Schmidt, Oliver G. and Makarov, Denys}, year={2017}, month=jan }