Abstract
AbstractScalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efficient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 μmol h−1g−1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efficient co-catalyst on ZnS or ZnxCd1−xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.
Authors
6
- Jingrun Ran (first)
- Guoping Gao (additional)
- Fa-Tang Li (additional)
- Tian-Yi Ma (additional)
- Aijun Du (additional)
- Shi-Zhang Qiao (additional)
References
44
Referenced
1,785
-
Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).
(
10.1039/C3CS60378D
) / Chem. Soc. Rev. by T Hisatomi (2014) -
Ran, J. et al. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015).
(
10.1039/C5EE02650D
) / Energy Environ. Sci. by J Ran (2015) -
Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
(
10.1038/238037a0
) / Nature by A Fujishima (1972) -
Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).
(
10.1021/cr1001645
) / Chem. Rev. by X Chen (2010) -
Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).
(
10.1039/B800489G
) / Chem. Soc. Rev. by A Kudo (2009) -
Ran, J. et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).
(
10.1039/C3CS60425J
) / Chem. Soc. Rev. by J Ran (2014) -
Zong, X. et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008).
(
10.1021/ja8007825
) / J. Am. Chem. Soc. by X Zong (2008) -
Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434–438 (2011).
(
10.1038/nmat3008
) / Nat. Mater. by Y Hou (2011) -
Bi, W. et al. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 6, 8647 (2015).
(
10.1038/ncomms9647
) / Nat. Commun. by W Bi (2015) -
Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).
(
10.1021/ja506261t
) / J. Am. Chem. Soc. by B Mahler (2014) -
Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).
(
10.1038/nnano.2008.215
) / Nat. Nanotechnol. by Y Hernandez (2008) -
Brown, K. A. et al. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 134, 5627–5636 (2012).
(
10.1021/ja2116348
) / J. Am. Chem. Soc. by KA Brown (2012) -
Wang, F. et al. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew Chem. Int. Ed. 50, 3193–3197 (2011).
(
10.1002/anie.201006352
) / Angew Chem. Int. Ed. by F Wang (2011) -
Khazaei, M. et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013).
(
10.1002/adfm.201202502
) / Adv. Funct. Mater. by M Khazaei (2013) -
Gao, Y. et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015).
(
10.1016/j.matlet.2015.02.135
) / Mater. Lett. by Y Gao (2015) -
Naguib, M. et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).
(
10.1021/ja405735d
) / J. Am. Chem. Soc. by M Naguib (2013) -
Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).
(
10.1126/science.1241488
) / Science by MR Lukatskaya (2013) -
Ghidiu, M. et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).
(
10.1038/nature13970
) / Nature by M Ghidiu (2014) -
Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).
(
10.1038/nchem.121
) / Nat. Chem. by JK Nørskov (2009) -
Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).
(
10.1039/C4CS00470A
) / Chem. Soc. Rev. by Y Jiao (2015) -
Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).
(
10.1149/1.1856988
) / J. Electrochem. Soc. by JK Nørskov (2005) -
Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).
(
10.1021/ja0504690
) / J. Am. Chem. Soc. by B Hinnemann (2005) -
Bonde, J. et al. Hydrogen evolution on nano-particulate transition metal sulfides. Farad. Discuss. 140, 219–231 (2009).
(
10.1039/B803857K
) / Farad. Discuss. by J Bonde (2009) -
Ma, T. Y., Cao, J. L., Jaroniec, M. & Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem. Int. Ed. 55, 1138–1142 (2016).
(
10.1002/anie.201509758
) / Angew Chem. Int. Ed. by TY Ma (2016) -
Ran, J., Yu, J. & Jaroniec, M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem. 13, 2708–2713 (2011).
(
10.1039/c1gc15465f
) / Green Chem. by J Ran (2011) -
Chauhan, H. et al. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS–Au hybrid nanoplatelets and corresponding application in photocatalysis. Nanoscale 8, 15802–15812 (2016).
(
10.1039/C6NR03610D
) / Nanoscale by H Chauhan (2016) -
Rengaraj, S. et al. Cauliflower-like CdS microspheres composed of nanocrystals and their physicochemical properties. Langmuir 27, 352–358 (2011).
(
10.1021/la1032288
) / Langmuir by S Rengaraj (2011) -
Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012).
(
10.1021/ja302846n
) / J. Am. Chem. Soc. by Q Xiang (2012) -
Chang, K. et al. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8, 7078–7087 (2014).
(
10.1021/nn5019945
) / ACS Nano by K Chang (2014) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Jakob, M., Levanon, H. & Kamat, P. V. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett. 3, 353–358 (2003).
(
10.1021/nl0340071
) / Nano Lett. by M Jakob (2003) -
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).
(
10.1039/C2CS35266D
) / Chem. Soc. Rev. by FE Osterloh (2013) -
Leung, D. Y. C. et al. Hydrogen production over titania-based photocatalysts. ChemSusChem. 3, 681–694 (2010).
(
10.1002/cssc.201000014
) / ChemSusChem. by DYC Leung (2010) -
Yan, H. et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 266, 165–168 (2009).
(
10.1016/j.jcat.2009.06.024
) / J. Catal. by H Yan (2009) -
Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).
(
10.1021/ar300227e
) / Acc. Chem. Res. by J Yang (2013) -
Peng, Q. et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136, 4113–4116 (2014).
(
10.1021/ja500506k
) / J. Am. Chem. Soc. by Q Peng (2014) -
Zhang, J., Qiao, S. Z., Qi, L. & Yu, J. Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys. Chem. Chem. Phys. 15, 12088–12094 (2013).
(
10.1039/c3cp50734c
) / Phys. Chem. Chem. Phys. by J Zhang (2013) -
Lang, D., Shen, T. & Xiang, Q. Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem. 7, 943–951 (2015).
(
10.1002/cctc.201403062
) / ChemCatChem. by D Lang (2015) -
Ran, J., Zhang, J., Yu, J. & Qiao, S. Z. Enhanced visible-light photocatalytic H2 production by ZnxCd1−xS modified with earth-abundant nickel-based cocatalysts. ChemSusChem. 7, 3426–3434 (2014).
(
10.1002/cssc.201402574
) / ChemSusChem. by J Ran (2014) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comp. Mater. Sci. by G Kresse (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).
(
10.1063/1.2187006
) / J. Chem. Phys. by J Paier (2006) -
Paier, J. et al. Erratum: Screened hybrid density functionals applied to solids. J. Chem. Phys. 125, 249901 (2006).
(
10.1063/1.2403866
) / J. Chem. Phys. by J Paier (2006)
Dates
Type | When |
---|---|
Created | 8 years, 7 months ago (Jan. 3, 2017, 6:08 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 22, 2022, 7:10 p.m.) |
Indexed | 5 hours, 13 minutes ago (Aug. 23, 2025, 1:14 a.m.) |
Issued | 8 years, 7 months ago (Jan. 3, 2017) |
Published | 8 years, 7 months ago (Jan. 3, 2017) |
Published Online | 8 years, 7 months ago (Jan. 3, 2017) |
@article{Ran_2017, title={Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production}, volume={8}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13907}, DOI={10.1038/ncomms13907}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Ran, Jingrun and Gao, Guoping and Li, Fa-Tang and Ma, Tian-Yi and Du, Aijun and Qiao, Shi-Zhang}, year={2017}, month=jan }