Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractInterfacial spin-orbit torques (SOTs) enable the manipulation of the magnetization through in-plane charge currents, which has drawn increasing attention for spintronic applications. The search for material systems providing efficient SOTs, has been focused on polycrystalline ferromagnetic metal/non-magnetic metal bilayers. In these systems, currents flowing in the non-magnetic layer generate—due to strong spin–orbit interaction—spin currents via the spin Hall effect and induce a torque at the interface to the ferromagnet. Here we report the observation of robust SOT occuring at a single crystalline Fe/GaAs (001) interface at room temperature. We find that the magnitude of the interfacial SOT, caused by the reduced symmetry at the interface, is comparably strong as in ferromagnetic metal/non-magnetic metal systems. The large spin-orbit fields at the interface also enable spin-to-charge current conversion at the interface, known as spin-galvanic effect. The results suggest that single crystalline Fe/GaAs interfaces may enable efficient electrical magnetization manipulation.

Bibliography

Chen, L., Decker, M., Kronseder, M., Islinger, R., Gmitra, M., Schuh, D., Bougeard, D., Fabian, J., Weiss, D., & Back, C. H. (2016). Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature. Nature Communications, 7(1).

Authors 10
  1. L. Chen (first)
  2. M. Decker (additional)
  3. M. Kronseder (additional)
  4. R. Islinger (additional)
  5. M. Gmitra (additional)
  6. D. Schuh (additional)
  7. D. Bougeard (additional)
  8. J. Fabian (additional)
  9. D. Weiss (additional)
  10. C. H. Back (additional)
References 41 Referenced 54
  1. Dresselhaus, G. Spin-orbit coupling effects in zincblende structures. Phys. Rev. 100, 580–586 (1955). (10.1103/PhysRev.100.580) / Phys. Rev. by G Dresselhaus (1955)
  2. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C: Solid State Phys. 17, 6039–6045 (1984). (10.1088/0022-3719/17/33/015) / J. Phys. C: Solid State Phys. by YA Bychkov (1984)
  3. Aronov, A. G., Lyanda-Geller, Y. B. & Pikus, G. E. Spin polarization of electrons by an electric current. Sov. Phys. JETP 73, 537–541 (1991). / Sov. Phys. JETP by AG Aronov (1991)
  4. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimentional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990). (10.1016/0038-1098(90)90963-C) / Solid State Commun. by VM Edelstein (1990)
  5. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004). (10.1103/PhysRevLett.92.126603) / Phys. Rev. Lett. by J Sinova (2004)
  6. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002). (10.1038/417153a) / Nature by SD Ganichev (2002)
  7. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015). (10.1103/RevModPhys.87.1213) / Rev. Mod. Phys. by J Sinova (2015)
  8. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011). (10.1038/nature10309) / Nature by IM Miron (2011)
  9. Liu, L. Q. et al. Spin-torque switching with the giant spin Hall effect of Tantalum. Science 336, 555–558 (2012). (10.1126/science.1218197) / Science by LQ Liu (2012)
  10. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009). (10.1038/nphys1362) / Nat. Phys. by A Chernyshov (2009)
  11. Endo, M., Matsukura, F. & Ohno, H. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl. Phys. Lett. 97, 222501 (2010). (10.1063/1.3520514) / Appl. Phys. Lett. by M Endo (2010)
  12. Fang, D. et al. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011). (10.1038/nnano.2011.68) / Nat. Nanotech. by D Fang (2011)
  13. Kurebayashi, H. et al. An antidamping spin-orbit torque originating from the Berry curvature. Nat. Nanotech. 9, 211–217 (2014). (10.1038/nnano.2014.15) / Nat. Nanotech. by H Kurebayashi (2014)
  14. Ciccarelli, C. et al. Room-temperature spin-orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016). (10.1038/nphys3772) / Nat. Phys. by C Ciccarelli (2016)
  15. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). (10.1126/science.aab1031) / Science by P Wadley (2016)
  16. Gmitra, M., Matos-Abiague, A., Draxl, C. & Fabian, J. Magnetic control of spin-orbit fields: a first-principle study of Fe/GaAs junctions. Phys. Rev. Lett. 111, 036603 (2013). (10.1103/PhysRevLett.111.036603) / Phys. Rev. Lett. by M Gmitra (2013)
  17. Moser, J. et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 99, 056601 (2007). (10.1103/PhysRevLett.99.056601) / Phys. Rev. Lett. by J Moser (2007)
  18. Hupfauer, T. et al. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat. Commun. 6, 7374 (2015). (10.1038/ncomms8374) / Nat. Commun. by T Hupfauer (2015)
  19. Garello, K. et al. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotech. 8, 587–593 (2013). (10.1038/nnano.2013.145) / Nat. Nanotech. by K Garello (2013)
  20. Fan, X. et al. Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers. Nat. Commun. 5, 3042 (2014). (10.1038/ncomms4042) / Nat. Commun. by X Fan (2014)
  21. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta |CoFeB| MgO. Nat. Mater. 12, 240–245 (2013). (10.1038/nmat3522) / Nat. Mater. by J Kim (2013)
  22. Skinner, T. D. et al. Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nat. Commun. 6, 6730 (2015). (10.1038/ncomms7730) / Nat. Commun. by TD Skinner (2015)
  23. Tserkovyak, Y. et al. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002). (10.1103/PhysRevLett.88.117601) / Phys. Rev. Lett. by Y Tserkovyak (2002)
  24. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002). (10.1103/PhysRevB.66.104413) / Phys. Rev. B by S Mizukami (2002)
  25. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006). (10.1063/1.2199473) / Appl. Phys. Lett. by E Saitoh (2006)
  26. Rojas Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013). (10.1038/ncomms3944) / Nat. Commun. by JC Rojas Sánchez (2013)
  27. Rinaldi, C. et al. Evidence for spin to charge conversion in GeTe(111). APL Mater. 4, 032501 (2016). (10.1063/1.4941276) / APL Mater. by C Rinaldi (2016)
  28. Juretschke, H. J. Electromagnetic theory of dc effects in ferromagnetic resonance. J. Appl. Phys. 31, 1401–1406 (1960). (10.1063/1.1735851) / J. Appl. Phys. by HJ Juretschke (1960)
  29. Liu, X. & Furdyna, J. K. Ferromagnetic resonance in Ga1-xMnxAs dilute magnetic semiconductors. J. Phys. Condens. Matter 18, R245–R279 (2006). (10.1088/0953-8984/18/13/R02) / J. Phys. Condens. Matter by X Liu (2006)
  30. Chen, L., Matsukura, F. & Ohno, H. Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat. Commun. 4, 2055 (2013). (10.1038/ncomms3055) / Nat. Commun. by L Chen (2013)
  31. Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004). (10.1109/TMAG.2004.836740) / IEEE Trans. Magn. by TL Gilbert (2004)
  32. Qaiumzadeh, A., Duine, R. A. & Titov, M. Spin-orbit torques in two-dimentional Rashba ferromagnets.. Phys. Rev. B 92, 014402 (2015). (10.1103/PhysRevB.92.014402) / Phys. Rev. B by A Qaiumzadeh (2015)
  33. Li, H. et al. Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets.. Phys. Rev. B 91, 134403 (2015). (10.1103/PhysRevB.91.134403) / Phys. Rev. B by H Li (2015)
  34. Obstbaum, M. et al. Inverse spin Hall effect in Ni81Fe19/normal-metal bilayers. Phys. Rev. B 89, 060407 (R) (2014). (10.1103/PhysRevB.89.060407) / Phys. Rev. B by M Obstbaum (2014)
  35. Bai, L. H., Feng, Z., Hyde, P., Ding, H. F. & Hu, C. M. Distinguishing spin pumping from spin rectification in a Pt/Py bilayer through angle dependence line shape analysis. Appl. Phys. Lett. 102, 242402 (2013). (10.1063/1.4811482) / Appl. Phys. Lett. by LH Bai (2013)
  36. Bai, L. H. et al. Universal method for separating spin pumping from spin rectification voltage of ferromagnetic resonance. Phys. Rev. Lett. 111, 217602 (2013). (10.1103/PhysRevLett.111.217602) / Phys. Rev. Lett. by LH Bai (2013)
  37. Shiomi, Y. et al. Spin-electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014). (10.1103/PhysRevLett.113.196601) / Phys. Rev. Lett. by Y Shiomi (2014)
  38. Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: Role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001). (10.1103/PhysRevLett.87.217204) / Phys. Rev. Lett. by R Urban (2001)
  39. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010). (10.1103/PhysRevLett.104.046601) / Phys. Rev. Lett. by O Mosendz (2010)
  40. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014). (10.1103/PhysRevLett.112.096601) / Phys. Rev. Lett. by K Shen (2014)
  41. Wei, D. H., Obstbaum, M., Ribow, M., Back, C. H. & Woltersdorf, G. Spin Hall voltages from a.c. and d.c. spin currents. Nat. Commun. 5, 3768 (2014). (10.1038/ncomms4768) / Nat. Commun. by DH Wei (2014)
Dates
Type When
Created 8 years, 8 months ago (Dec. 13, 2016, 5:24 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 4:27 a.m.)
Indexed 3 weeks, 4 days ago (Aug. 6, 2025, 9:20 a.m.)
Issued 8 years, 8 months ago (Dec. 13, 2016)
Published 8 years, 8 months ago (Dec. 13, 2016)
Published Online 8 years, 8 months ago (Dec. 13, 2016)
Funders 0

None

@article{Chen_2016, title={Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13802}, DOI={10.1038/ncomms13802}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Chen, L. and Decker, M. and Kronseder, M. and Islinger, R. and Gmitra, M. and Schuh, D. and Bougeard, D. and Fabian, J. and Weiss, D. and Back, C. H.}, year={2016}, month=dec }