Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Islam, R., Edwards, E. E., Kim, K., Korenblit, S., Noh, C., Carmichael, H., Lin, G.-D., Duan, L.-M., Joseph Wang, C.-C., Freericks, J. K., & Monroe, C. (2011). Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Communications, 2(1).

Authors 11
  1. R. Islam (first)
  2. E.E. Edwards (additional)
  3. K. Kim (additional)
  4. S. Korenblit (additional)
  5. C. Noh (additional)
  6. H. Carmichael (additional)
  7. G.-D. Lin (additional)
  8. L.-M. Duan (additional)
  9. C.-C. Joseph Wang (additional)
  10. J.K. Freericks (additional)
  11. C. Monroe (additional)
References 26 Referenced 334
  1. Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). (10.1007/BF02650179) / Int. J. Theor. Phys. by R Feynman (1982)
  2. Lloyd, S. Universal quantum simulators. Science 273, 1073 (1996). (10.1126/science.273.5278.1073) / Science by S Lloyd (1996)
  3. Simon, J. et al. Quantum simulation of an antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011). (10.1038/nature09994) / Nature by J Simon (2011)
  4. Struck, J. et al. Quantum simulation of frustrated magnetism in triangular optical lattices arXiv:1103.5944.
  5. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92: 207901 (2004). (10.1103/PhysRevLett.92.207901)
  6. Deng, X.- L., Porras, D. & Cirac, J. I. Effective spin quantum phases in systems of trapped ions. Phys. Rev. A 72 (2005). (10.1103/PhysRevA.72.063407)
  7. Taylor, J. M. & Calarco, T. Wigner crystals of ions as quantum hard drives. Phys. Rev. A 78: 062331 (2008). (10.1103/PhysRevA.78.062331)
  8. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008). (10.1038/nphys1032) / Nature Phys. by A Friedenauer (2008)
  9. Kim, K. et al. Quantum simulation of frustrated ising spins with trapped ions. Nature 465, 590–593 (2010). (10.1038/nature09071) / Nature by K Kim (2010)
  10. Edwards, E. E. et al. Quantum simulation and phase diagram of the transverse-field ising model with three atomic spins. Phys. Rev. B 82: 060412 (2010). (10.1103/PhysRevB.82.060412)
  11. Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008). (10.1038/nphys894) / Nature Phys. by S Sachdev (2008)
  12. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292, 472 (2001). (10.1126/science.1057726) / Science by E Farhi (2001)
  13. Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45, 255–282 (1950). (10.6028/jres.045.026) / J. Res. Nat. Bur. Standards by C Lanczos (1950)
  14. Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15, 3241–3253 (1982). (10.1088/0305-4470/15/10/028) / J. Phys. A: Math. Gen. by F Barahona (1982)
  15. Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76: 052314 (2007). (10.1103/PhysRevA.76.052314)
  16. Deslauriers, L. et al. Zero-point cooling and low heating of trapped 111Cd+ ions. Phys. Rev. A 70: 043408 (2004). (10.1103/PhysRevA.70.043408)
  17. Kim, K. et al. Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103: 120502 (2009). (10.1103/PhysRevLett.103.120502)
  18. Binder, K. Finite size scaling analysis of Ising model block distribution functions. Physik B 43, 119 (1981). (10.1007/BF01293604) / Physik B by K Binder (1981)
  19. Binder, K. Critical properties from monte carlo coarse graining and renormalization. Phys. Rev. Lett. 47, 693–696 (1981). (10.1103/PhysRevLett.47.693) / Phys. Rev. Lett. by K Binder (1981)
  20. Fisher, M. E. & Barber, M. N. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 28, 1516–1519 (1972). (10.1103/PhysRevLett.28.1516) / Phys. Rev. Lett. by ME Fisher (1972)
  21. Dusuel, S. & Vidal, J. Continuous unitary transformations and finite-size scaling exponents in the lipkin-meshkov-glick model. Phys. Rev. B 71: 224420 (2005). (10.1103/PhysRevB.71.224420)
  22. Caneva, T., Fazio, R. & Santoro, G. E. Adiabatic quantum dynamics of the lipkin-meshkov-glick model. Phys. Rev. B 78: 104426 (2008). (10.1103/PhysRevB.78.104426)
  23. Campbell, W. C. et al. Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105: 090502 (2010). (10.1103/PhysRevLett.105.090502)
  24. Lin, G.- D., Monroe, C. & Duan, L.- M. Sharp phase transitions in a small frustrated network of trapped ion spins ArXiv 1011. 5885.
  25. Acton, M. Detection and Control of Individual Trapped Ions and Neutral Atoms Ph.D. thesis (University of Michigan, 2008).
  26. Zhu, S.- L., Monroe, C. & Duan, L.- M. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97: 050505 (2006). (10.1103/PhysRevLett.97.050505)
Dates
Type When
Created 14 years, 1 month ago (July 5, 2011, 5:35 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 7:56 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 6, 2025, 9 a.m.)
Issued 14 years, 1 month ago (July 5, 2011)
Published 14 years, 1 month ago (July 5, 2011)
Published Online 14 years, 1 month ago (July 5, 2011)
Funders 0

None

@article{Islam_2011, title={Onset of a quantum phase transition with a trapped ion quantum simulator}, volume={2}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1374}, DOI={10.1038/ncomms1374}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Islam, R. and Edwards, E.E. and Kim, K. and Korenblit, S. and Noh, C. and Carmichael, H. and Lin, G.-D. and Duan, L.-M. and Joseph Wang, C.-C. and Freericks, J.K. and Monroe, C.}, year={2011}, month=jul }