Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractA grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours’ (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles’ in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

Bibliography

Xu, W. W., Zhu, B., Zeng, X. C., & Gao, Y. (2016). A grand unified model for liganded gold clusters. Nature Communications, 7(1).

Authors 4
  1. Wen Wu Xu (first)
  2. Beien Zhu (additional)
  3. Xiao Cheng Zeng (additional)
  4. Yi Gao (additional)
References 89 Referenced 180
  1. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–984 (2008). (10.1038/nature07194) / Nature by M Turner (2008)
  2. Chen, S. et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098–2101 (1998). (10.1126/science.280.5372.2098) / Science by S Chen (1998)
  3. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). (10.1021/cr030698+) / Chem. Rev. by MC Daniel (2004)
  4. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006). (10.1126/science.1125559) / Science by NL Rosi (2006)
  5. Robilotto, T. J., Bacsa, J., Gray, T. G. & Sadighi, J. P. Synthesis of a trigold monocation: an isolobal analogue of [H3]+. Angew. Chem. 124, 12243–12246 (2012). (10.1002/ange.201206712) / Angew. Chem. by TJ Robilotto (2012)
  6. Zeller, E., Beruda, H. & Schmidbaur, H. Tetrahedral gold cluster [Au4]2+: crystal structure of {[(tBu)3PAu]4}2+(BF4−)2·2CHCl3 . Inorg. Chem. 32, 3203–3204 (1993). (10.1021/ic00067a002) / Inorg. Chem. by E Zeller (1993)
  7. Briant, C. E., Hall, K. P., Mingos, D. M. P. & Wheeler, A. C. Synthesis and structural characterisation of hexakis (triphenyl phosphine)-hexagold (2+) nitrate, [Au6(PPh3)6][NO3]2, and related clusters with edge-sharing bitetrahedral geometries. J. Chem. Soc. Dalton Trans. 687–692 (1986). (10.1039/dt9860000687)
  8. Bellon, P., Manassero, M. & Sansoni, M. An octahedral gold cluster: crystal and molecular structure of hexakis[tris-(p-tolyl)phosphine]-octahedro-hexagold bis(tetraphenylborate). J. Chem. Soc. Dalton Trans. 2423–2427 (1973). (10.1039/dt9730002423)
  9. Van Der Velden, J. W. A. et al. Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: preparation, x-ray analysis, and gold-197 Moessbauer and phosphorus-31{proton} NMR spectra. Inorg. Chem. 21, 4321–4324 (1982). (10.1021/ic00142a041) / Inorg. Chem. by JWA Van Der Velden (1982)
  10. Van Der Velden, J. W. A. et al. Intermediates in the formation of gold clusters. Preparation and x-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6 . Inorg. Chem. 23, 146–151 (1984). (10.1021/ic00170a007) / Inorg. Chem. by JWA Van Der Velden (1984)
  11. Shichibu, Y., Zhang, M., Kamei, Y. & Konishi, K. [Au7]3+: a missing link in the four-electron gold cluster family. J. Am. Chem. Soc. 136, 12892–12895 (2014). (10.1021/ja508005x) / J. Am. Chem. Soc. by Y Shichibu (2014)
  12. Kobayashi, N., Kamei, Y., Shichibu, Y. & Konishi, K. Protonation-induced chromism of pyridylethynyl-appended [core+exo]-type Au8 clusters. Resonance-coupled electronic perturbation through π-conjugated group. J. Am. Chem. Soc. 135, 16078–16081 (2013). (10.1021/ja4099092) / J. Am. Chem. Soc. by N Kobayashi (2013)
  13. Kamei, Y., Shichibu, Y. & Konishi, K. Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: Octanuclear clusters with edgesharing gold tetrahedron motifs. Angew. Chem. Int. Ed. 50, 7442–7445 (2011). (10.1002/anie.201102901) / Angew. Chem. Int. Ed. by Y Kamei (2011)
  14. Manassero, M., Naldini, L. & Sansoni, M. A new class of gold cluster compounds. Synthesis and X-ray structure of the octakis(triphenylphosphinegold) dializarinsulphonate, [Au8(PPh3)8](aliz)2 . J. Chem. Soc., Chem. Commun. 385–386 (1979). (10.1039/c39790000385)
  15. Van Der Velden, J. W. A., Bour, J. J., Bosman, W. P. & Noordik, J. H. Synthesis and X-ray crystal structure determination of the cationic gold cluster compound [Au8(PPh3)7](NO3)2 . J. Chem. Soc., Chem. Commun. 1218–1219 (1981). (10.1039/c39810001218)
  16. Yang, Y. & Sharp, P. R. New gold clusters [Au8L6](BF4)2 and [(AuL)4](BF4)2 (L=P(mesityl)3 . J. Am. Chem. Soc. 116, 6983–6984 (1994). (10.1021/ja00094a082) / J. Am. Chem. Soc. by Y Yang (1994)
  17. Bellon, P. L., Cariati, F., Manassero, M., Naldini, L. & Sansoni, M. Novel gold clusters. Preparation, properties, and X-ray structure determination of salts of octakis(triarylphosphine)enneagold, [Au9L8]X3 . J. Chem. Soc. D 1423–1424 (1971). (10.1039/c29710001423)
  18. Cooper, M. K., Dennis, G. R., Henrick, K. & Mcpartlin, M. A new type of gold cluster compound. The syntheses and X-ray structure analysis of pentakis (tricyclohexylphosphino) tris (thiocyanato) enneagold, [Au9{P(C6H11)3}5(SCN)3], and bis {tri (cyclohexyl) phosphinato} gold (I) hexafluorophosphate, [Au{P(C6H11)3}2][PF6]. Inorg. Chim. Acta. 45, L151–L152 (1980). (10.1016/S0020-1693(00)80129-2) / Inorg. Chim. Acta. by MK Cooper (1980)
  19. Van Der Velden, J. W. A., Bour, J. J., Bosman, W. P., Noordik, J. H. & Beurskens, P. T. The electrochemical preparation of [Au9(PPh3)8]+. A comparative study of the structures and properties of [Au9(PPh3)8]+ and [Au9(PPh3)8]3+. Recl. Trav. Chim. Pays-Bas 103, 13–16 (1984). (10.1002/recl.19841030102) / Recl. Trav. Chim. Pays-Bas by JWA Van Der Velden (1984)
  20. Briant, C. E., Hall, K. P., Wheeler, A. C. & Mingos, D. M. P. Structural characterisation of [Au10Cl3(PCy2Ph)6](NO3)(Cy=cyclohexyl) and the development of a structural principle for high nuclearity gold clusters. J. Chem. Soc.,Chem. Commun. 248–250 (1984). (10.1039/c39840000248)
  21. Nunokawa, K. et al. Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles. J. Organomet. Chem. 691, 638–642 (2006). (10.1016/j.jorganchem.2005.09.043) / J. Organomet. Chem. by K Nunokawa (2006)
  22. Shichibu, Y., Kamei, Y. & Konishi, K. Unique [core+two] structure and optical property of a dodeca-ligated undecagold cluster: critical contribution of the exo gold atoms to the electronic structure. Chem. Commun. 48, 7559–7561 (2012). (10.1039/c2cc30251a) / Chem. Commun. by Y Shichibu (2012)
  23. Smits, J. M. M., Bour, J. J., Vollenbroek, F. A. & Beurskens, P. T. Preparation and X-ray structure determination of [pentakis{1,3-bis(diphenylphosphino)propane}] undecagoldtris(thiocyanate), [Au11{PPh2C3H6PPh2}5](SCN)3 . J. Cryst. Spectrosc. 13, 355–363 (1983). (10.1007/BF01161298) / J. Cryst. Spectrosc. by JMM Smits (1983)
  24. Bellon, P., Manassero, M. & Sansoni, M. Crystal and molecular structure of tri-iodoheptakis(tri-p-fluorophenylphosphine)undecagold. J. Chem. Soc. Dalton Trans. 1481–1487 (1972). (10.1039/dt9720001481)
  25. McKenzie, L. C., Zaikova, T. O. & Hutchison, J. E. Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 136, 13426–13435 (2014). (10.1021/ja5075689) / J. Am. Chem. Soc. by LC McKenzie (2014)
  26. Briant, C. E., Tobald, B. R. C., White, J. W., Bell, L. K. & Mingos, D. M. P. Synthesis and X-ray structural characterization of the centered icosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction. J. Chem. Soc. Chem. Commun. 5, 201–202 (1981). (10.1039/c39810000201) / J. Chem. Soc. Chem. Commun. by CE Briant (1981)
  27. Gutrath, B. S. et al. [Au14(PPh3)8(NO3)4]: an example of a new class of Au(NO3)-ligated superatom complexes. Angew. Chem. Int. Ed. 52, 3529–3532 (2013). (10.1002/anie.201208681) / Angew. Chem. Int. Ed. by BS Gutrath (2013)
  28. Das, A. et al. Structure determination of [Au18(SR)14]. Angew. Chem. Int. Ed. 54, 3140–3144 (2015). (10.1002/anie.201410161) / Angew. Chem. Int. Ed. by A Das (2015)
  29. Chen, S. et al. The structure and optical properties of the [Au18(SR)14] nanocluster. Angew. Chem. Int. Ed. 54, 3145–3149 (2015). (10.1002/anie.201410295) / Angew. Chem. Int. Ed. by S Chen (2015)
  30. Wan, X., Tang, Q., Yuan, S., Jiang, D. & Wang, Q. M. Au19 nanocluster featuring a V−shaped alkynyl−gold motif. J. Am. Chem. Soc. 137, 652–655 (2015). (10.1021/ja512133a) / J. Am. Chem. Soc. by X Wan (2015)
  31. Wan, X., Tang, Q., Yuan, S., Jiang, D. & Wang, Q. M. Au20 nanocluster protected by hemilabile phosphines. J. Am. Chem. Soc. 134, 14750–14752 (2012). (10.1021/ja307256b) / J. Am. Chem. Soc. by X Wan (2012)
  32. Wan, X., Yuan, S., Lin, Z. & Wang, Q. M. A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands. Angew. Chem. Int. Ed. 53, 2923–2926 (2014). (10.1002/anie.201308599) / Angew. Chem. Int. Ed. by X Wan (2014)
  33. Zeng, C., Liu, C., Chen, Y., Rosi, N. L. & Jin, R. Gold-thiolate ring as a protecting motif in the Au20(SR)16 nanocluster and implications. J. Am. Chem. Soc. 136, 11922–11925 (2014). (10.1021/ja506802n) / J. Am. Chem. Soc. by C Zeng (2014)
  34. Chen, S. et al. Total structure determination of Au21(S-Adm)15 and geometrical/electronic structure evolution of thiolated gold nanoclusters. J. Am. Chem. Soc. 138, 10754–10757 (2016). (10.1021/jacs.6b06004) / J. Am. Chem. Soc. by S Chen (2016)
  35. Wan, X., Yuan, S., Tang, Q., Jiang, D. & Wang, Q. M. Alkynyl-protected Au23 nanocluster: a 12-electron system. Angew. Chem. Int. Ed. 54, 5977–5980 (2015). (10.1002/anie.201500590) / Angew. Chem. Int. Ed. by X Wan (2015)
  36. Das, A. et al. Nonsuperatomic [Au23(SC6H11)16]− nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J. Am. Chem. Soc. 135, 18264–18267 (2013). (10.1021/ja409177s) / J. Am. Chem. Soc. by A Das (2013)
  37. Wan, X. et al. A near-infrared-emissive alkynyl-protected Au24 nanocluster. Angew. Chem. Int. Ed. 54, 9683–9686 (2015). (10.1002/anie.201503893) / Angew. Chem. Int. Ed. by X Wan (2015)
  38. Crasto, D. et al. Au24(Sadm)16 nanomolecules: X-ray crystal structure, theoretical analysis, adaptability of adamantane ligands to form Au23(Sadm)16 and Au25(Sadm)16, and its relation to Au25(SR)18 . J. Am. Chem. Soc. 136, 14933–14940 (2014). (10.1021/ja507738e) / J. Am. Chem. Soc. by D Crasto (2014)
  39. Das, A. et al. Crystal structure and electronic properties of a thiolate-protected Au24 nanocluster. Nanoscale 6, 6458–6462 (2014). (10.1039/c4nr01350f) / Nanoscale by A Das (2014)
  40. Das, A. et al. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J. Am. Chem. Soc. 134, 20286–20289 (2012). (10.1021/ja3101566) / J. Am. Chem. Soc. by A Das (2012)
  41. Shichibu, Y. et al. Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n=2–18): a stepping stone to cluster-assembled materials. J. Phys. Chem. C 111, 7845–7847 (2007). (10.1021/jp073101t) / J. Phys. Chem. C by Y Shichibu (2007)
  42. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008). (10.1021/ja801173r) / J. Am. Chem. Soc. by M Zhu (2008)
  43. Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008). (10.1021/ja800561b) / J. Am. Chem. Soc. by MW Heaven (2008)
  44. Zeng, C., Li, T., Das, A., Rosi, N. L. & Jin, R. Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 135, 10011–10013 (2013). (10.1021/ja404058q) / J. Am. Chem. Soc. by C Zeng (2013)
  45. Chen, Y. et al. Isomerism in Au28(SR)20 nanocluster and stable structures. J. Am. Chem. Soc. 138, 1482–1485 (2016). (10.1021/jacs.5b12094) / J. Am. Chem. Soc. by Y Chen (2016)
  46. Dass, A. et al. Crystal structure and theoretical analysis of green gold Au30(S-tBu)18 nanomolecules and their relation to Au30S(S-tBu)18 . J. Phys. Chem. C 120, 6256–6261 (2016). (10.1021/acs.jpcc.6b00062) / J. Phys. Chem. C by A Dass (2016)
  47. Higaki, T. et al. Controlling the atomic structure of Au30 nanoclusters by a ligand-based strategy. Angew. Chem. Int. Ed. 55, 6694–6697 (2016). (10.1002/anie.201601947) / Angew. Chem. Int. Ed. by T Higaki (2016)
  48. Crasto, D., Malola, S., Brosofsky, G., Dass, A. & Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 136, 5000–5005 (2014). (10.1021/ja412141j) / J. Am. Chem. Soc. by D Crasto (2014)
  49. Zeng, C. et al. Total structure and electronic properties of the gold nanocrystal Au36(SR)24 . Angew. Chem. Int. Ed. 51, 13114–13118 (2012). (10.1002/anie.201207098) / Angew. Chem. Int. Ed. by C Zeng (2012)
  50. Yang, S. et al. A new crystal structure of Au36 with a Au14 kernel cocapped by thiolate and chloride. J. Am. Chem. Soc. 137, 10033–10035 (2015). (10.1021/jacs.5b06235) / J. Am. Chem. Soc. by S Yang (2015)
  51. Jin, R. et al. Tri-icosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: linear assembly of icosahedral building blocks. ACS Nano 9, 8530–8536 (2015). (10.1021/acsnano.5b03524) / ACS Nano by R Jin (2015)
  52. Liu, C. et al. Observation of body-centered cubic gold nanocluster. Angew. Chem. Int. Ed. 54, 9826–9829 (2015). (10.1002/anie.201502667) / Angew. Chem. Int. Ed. by C Liu (2015)
  53. Qian, H., Eckenhoff, W. T., Zhu, Y., Pintauer, T. & Jin, R. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 132, 8280–8281 (2010). (10.1021/ja103592z) / J. Am. Chem. Soc. by H Qian (2010)
  54. Tian, S. et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 6, 8667 (2015). (10.1038/ncomms9667) / Nat. Commun. by S Tian (2015)
  55. Teo, B. K., Shi, X. & Zhang, H. Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J. Am. Chem. Soc. 114, 2743–2745 (1992). (10.1021/ja00033a073) / J. Am. Chem. Soc. by BK Teo (1992)
  56. Zeng, C. et al. Gold tetrahedra coil up: Kekulé-like and double helical superstructures. Sci. Adv. 1, e1500425 (2015). (10.1126/sciadv.1500425) / Sci. Adv. by C Zeng (2015)
  57. Liao, L. et al. Structure of chiral Au44(2,4-DMBT)26 nanocluster with an 18-electron shell closure. J. Am. Chem. Soc. 138, 10425–10428 (2016). (10.1021/jacs.6b07178) / J. Am. Chem. Soc. by L Liao (2016)
  58. Zeng, C. et al. Gold quantum boxes: on the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 138, 3950–3953 (2016). (10.1021/jacs.5b12747) / J. Am. Chem. Soc. by C Zeng (2016)
  59. Zeng, C., Liu, C., Chen, Y., Rosi, N. L. & Jin, R. atomic structure of self-assembled monolayer of thiolates on a tetragonal Au92 nanocrystal. J. Am. Chem. Soc. 138, 8710–8713 (2016). (10.1021/jacs.6b04835) / J. Am. Chem. Soc. by C Zeng (2016)
  60. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007). (10.1126/science.1148624) / Science by PD Jadzinsky (2007)
  61. Chen, Y. et al. Crystal structure of barrel-shaped chiral Au130(p-MBT)50 nanocluster. J. Am. Chem. Soc. 137, 10076–10079 (2015). (10.1021/jacs.5b05378) / J. Am. Chem. Soc. by Y Chen (2015)
  62. Dass, A. et al. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 137, 4610–4613 (2015). (10.1021/ja513152h) / J. Am. Chem. Soc. by A Dass (2015)
  63. Zeng, C. et al. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 1, e1500045 (2015). (10.1126/sciadv.1500045) / Sci. Adv. by C Zeng (2015)
  64. Liu, C., Pei, Y., Sun, H. & Ma, J. The nucleation and growth mechanism of thiolate-protected Au nanoclusters. J. Am. Chem. Soc. 137, 15809–15816 (2015). (10.1021/jacs.5b09466) / J. Am. Chem. Soc. by C Liu (2015)
  65. Jiang, D., Overbury, S. H. & Dai, S. Structure of Au15(SR)13 and its implication for the origin of the nucleus in thiolated gold nanoclusters. J. Am. Chem. Soc. 135, 8786–8789 (2013). (10.1021/ja402680c) / J. Am. Chem. Soc. by D Jiang (2013)
  66. Cheng, L., Yuan, Y., Zhang, X. & Yang, J. Superatom networks in thiolate-protected gold nanoparticles. Angew. Chem. Int. Ed. 52, 9035–9039 (2013). (10.1002/anie.201302926) / Angew. Chem. Int. Ed. by L Cheng (2013)
  67. Pei, Y., Gao, Y., Shao, N. & Zeng, X. C. Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple motif. J. Am. Chem. Soc. 131, 13619–13621 (2009). (10.1021/ja905359b) / J. Am. Chem. Soc. by Y Pei (2009)
  68. Pei, Y., Tang, J., Tang, X., Huang, Y. & Zeng, X. C. New structure model of Au22(SR)18: bitetrahederon golden kernel enclosed by [Au6(SR)6] Au(I) complex. J. Phys. Chem. Lett. 6, 1390–1395 (2015). (10.1021/acs.jpclett.5b00364) / J. Phys. Chem. Lett. by Y Pei (2015)
  69. Pei, Y. et al. Interlocked catenane-like structure predicted in Au24(SR)20: implication to structural evolution of thiolated gold clusters from homoleptic gold(i) thiolates to core-stacked nanoparticles. J. Am. Chem. Soc. 134, 3015–3024 (2012). (10.1021/ja208559y) / J. Am. Chem. Soc. by Y Pei (2012)
  70. Akola, J., Walter, M., Whetten, R. L., Häkkinen, H. & Grönbeck, H. On the structure of thiolate-protected Au25 . J. Am. Chem. Soc. 130, 3756–3757 (2008). (10.1021/ja800594p) / J. Am. Chem. Soc. by J Akola (2008)
  71. Tian, Z. & Cheng, L. Electronic and geometric structures of Au30 clusters: a network of 2e-superatom Au cores protected by tridentate protecting motifs with u3-S. Nanoscale 8, 826–834 (2016). (10.1039/C5NR05020K) / Nanoscale by Z Tian (2016)
  72. Pei, Y., Gao, Y. & Zeng, X. C. Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 130, 7830–7832 (2008). (10.1021/ja802975b) / J. Am. Chem. Soc. by Y Pei (2008)
  73. Malola, S. et al. Au40(SR)24 cluster as a chiral dimer of 8-electron superatoms: Structure and optical properties. J. Am. Chem. Soc. 134, 19560–19563 (2012). (10.1021/ja309619n) / J. Am. Chem. Soc. by S Malola (2012)
  74. Pei, Y., Lin, S. S., Su, J. & Liu, C. Structure prediction of Au44(SR)28: a chiral superatom cluster. J. Am. Chem. Soc. 135, 19060–19063 (2013). (10.1021/ja409788k) / J. Am. Chem. Soc. by Y Pei (2013)
  75. Xu, W. W., Gao, Y. & Zeng, X. C. Unraveling structures of protection ligands on gold nanoparticle Au68(SH)32 . Sci. Adv. 1, e1400211 (2015). (10.1126/sciadv.1400211) / Sci. Adv. by WW Xu (2015)
  76. Xu, W. W., Li, Y., Gao, Y. & Zeng, X. C. Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters. Nanoscale 8, 7396–7401 (2016). (10.1039/C6NR00272B) / Nanoscale by WW Xu (2016)
  77. Xu, W. W. & Gao, Y. Unraveling the atomic structures of the Au68(SR)34 nanoparticles. J. Phys. Chem. C 119, 14224–14229 (2015). (10.1021/acs.jpcc.5b03128) / J. Phys. Chem. C by WW Xu (2015)
  78. Lopez-Acevedo, O., Akola, J., Whetten, R. L., Grönbeck, H. & Häkkinen, H. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60 . J. Phys. Chem. C 113, 5035–5038 (2009). (10.1021/jp8115098) / J. Phys. Chem. C by O Lopez-Acevedo (2009)
  79. Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D 792–793 (1971). (10.1039/c29710000792)
  80. Mingos, D. M. P. A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 236, 99–102 (1972). (10.1038/physci236099a0) / Nat. Phys. Sci. by DMP Mingos (1972)
  81. Mingos, D. M. P. Molecular-orbital calculations on cluster compounds of gold. J. Chem. Soc. Dalton Trans. 1163–1169 (1976). (10.1039/dt9760001163)
  82. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. 105, 9157–9162 (2008). (10.1073/pnas.0801001105) / Proc. Natl Acad. Sci. by M Walter (2008)
  83. Ekardt, W. Dynamical polarizability of small metal particles: self-consistent spherical jellium background model. Phys. Rev. Lett. 52, 1925–1928 (1984). (10.1103/PhysRevLett.52.1925) / Phys. Rev. Lett. by W Ekardt (1984)
  84. Cheng, L., Ren, C., Zhang, X. & Yang, J. New insight into the electronic shell of Au38(SR)24: a superatomic molecule. Nanoscale 5, 1475–1478 (2013). (10.1039/c2nr32888g) / Nanoscale by L Cheng (2013)
  85. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008). (10.1039/b804083d) / Phys. Chem. Chem. Phys. by DY Zubarev (2008)
  86. Natarajan, G., Mathew, A., Negishi, Y., Whetten, R. L. & Pradeep, T. A unified framework for understanding the structure and modifications of atomically precise monolayer protected gold clusters. J. Phys. Chem. C 119, 27768–27785 (2015). (10.1021/acs.jpcc.5b08193) / J. Phys. Chem. C by G Natarajan (2015)
  87. Pei, Y. & Zeng, X. C. Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale 4, 4054–4072 (2012). (10.1039/c2nr30685a) / Nanoscale by Y Pei (2012)
  88. Häkkinen, H., Walter, M. & Gronbeck, H. Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J. Phys. Chem. B 110, 9927–9931 (2006). (10.1021/jp0619787) / J. Phys. Chem. B by H Häkkinen (2006)
  89. Tofanelli, M. A. et al. Jahn–Teller effects in Au25(SR)18 . Chem. Sci. 7, 1882–1890 (2016). (10.1039/C5SC02134K) / Chem. Sci. by MA Tofanelli (2016)
Dates
Type When
Created 8 years, 9 months ago (Dec. 2, 2016, 5:22 a.m.)
Deposited 2 years, 8 months ago (Jan. 4, 2023, 4:34 a.m.)
Indexed 1 week ago (Aug. 29, 2025, 6:39 a.m.)
Issued 8 years, 9 months ago (Dec. 2, 2016)
Published 8 years, 9 months ago (Dec. 2, 2016)
Published Online 8 years, 9 months ago (Dec. 2, 2016)
Funders 0

None

@article{Xu_2016, title={A grand unified model for liganded gold clusters}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13574}, DOI={10.1038/ncomms13574}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Xu, Wen Wu and Zhu, Beien and Zeng, Xiao Cheng and Gao, Yi}, year={2016}, month=dec }