Abstract
AbstractRecently, negative differential resistance devices have attracted considerable attention due to their folded current–voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.
Authors
12
- Jaewoo Shim (first)
- Seyong Oh (additional)
- Dong-Ho Kang (additional)
- Seo-Hyeon Jo (additional)
- Muhammad Hasnain Ali (additional)
- Woo-Young Choi (additional)
- Keun Heo (additional)
- Jaeho Jeon (additional)
- Sungjoo Lee (additional)
- Minwoo Kim (additional)
- Young Jae Song (additional)
- Jin-Hong Park (additional)
References
47
Referenced
405
-
Gan, K.-J., Tsai, C.-S., Chen, Y.-W. & Yeh, W.-K. Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid State Electron. 54, 1637–1640 (2010).
(
10.1016/j.sse.2010.08.007
) / Solid State Electron. by K-J Gan (2010) -
Ganjipour, B. et al. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett. 11, 4222–4226 (2011).
(
10.1021/nl202180b
) / Nano Lett. by B Ganjipour (2011) -
Desplanque, L. et al. Influence of nanoscale faceting on the tunneling properties of near broken gap InAs/AlGaSb heterojunctions grown by selective area epitaxy. Nanotechnology 25, 465302 (2014).
(
10.1088/0957-4484/25/46/465302
) / Nanotechnology by L Desplanque (2014) -
Li, Q., Han, Y., Lu, X. & Lau, K. M. GaAs-InGaAs-GaAs fin-array tunnel diodes on (001) Si substrates with room-temperature peak-to-valley current ratio of 5.4. IEEE Electron Dev. Lett. 37, 24–27 (2016).
(
10.1109/LED.2015.2499603
) / IEEE Electron Dev. Lett. by Q Li (2016) -
Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).
(
10.1021/acs.nanolett.5b01792
) / Nano Lett. by R Yan (2015) -
Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).
(
10.1021/nn507278b
) / ACS Nano by T Roy (2015) -
Nourbakhsh, A., Zubair, A., Dresselhaus, M. S. & Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16, 1359–1366 (2016).
(
10.1021/acs.nanolett.5b04791
) / Nano Lett. by A Nourbakhsh (2016) -
Schmidt, O. G. et al. Resonant tunneling diodes made up of stacked self-assembled Ge/Si islands. Appl. Phys. Lett. 77, 4341–4343 (2000).
(
10.1063/1.1332817
) / Appl. Phys. Lett. by OG Schmidt (2000) -
Duschl, R. & Eberl, K. Physics and applications of Si/SiGe/Si resonant interband tunneling diodes. Thin Solid Films 380, 151–153 (2000).
(
10.1016/S0040-6090(00)01491-7
) / Thin Solid Films by R Duschl (2000) -
See, P. & Paul, D. J. The scaled performance of Si/Si1-xGex resonant tunneling diodes. IEEE Electron Dev. Lett. 22, 582–584 (2001).
(
10.1109/55.974584
) / IEEE Electron Dev. Lett. by P See (2001) -
Jin, N. et al. Tri-state logic using vertically integrated Si–SiGe resonant interband tunneling diodes with double NDR. IEEE Electron Dev. Lett. 25, 646–648 (2004).
(
10.1109/LED.2004.833845
) / IEEE Electron Dev. Lett. by N Jin (2004) -
Brown, E. R. et al. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 58, 2291–2293 (1991).
(
10.1063/1.104902
) / Appl. Phys. Lett. by ER Brown (1991) -
Waho, T., Chen, K. J. & Yamamoto, M. Resonant-tunneling diode and HEMT logic circuits with multiple thresholds and multilevel output. IEEE J. Solid State Circuits 33, 268–274 (1998).
(
10.1109/4.658629
) / IEEE J. Solid State Circuits by T Waho (1998) -
Nakamura, M., Takahagi, S., Saito, M. & Suhara, M. Analysis of a monolithic integrated rectenna by using an InGaAs/InAlAs triple-barrier resonant tunneling diode for zero bias detection of submilimeter-waves. Phys. Status Solidi C 9, 377–380 (2012).
(
10.1002/pssc.201100285
) / Status Solidi C by M Nakamura (2012) -
Fallahazad, B. et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15, 428–433 (2015).
(
10.1021/nl503756y
) / Nano Lett. by B Fallahazad (2015) -
Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun 4, 1794 (2013).
(
10.1038/ncomms2817
) / Nat. Commun by L Britnell (2013) -
Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol 9, 808–813 (2014).
(
10.1038/nnano.2014.187
) / Nat. Nanotechnol by A Mishchenko (2014) -
Nguyen, L.-N. et al. Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2 . Nano Lett. 14, 2381–2386 (2014).
(
10.1021/nl404790n
) / Nano Lett. by L-N Nguyen (2014) -
Lin, Y.-C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015).
(
10.1038/ncomms8311
) / Nat. Commun. by Y-C Lin (2015) -
Buchs, G., Ruffieux, P., Gröning, P. & Gröning, O. Defect-induced negative differential resistance in single-walled carbon nanotubes. Appl. Phys. Lett. 93, 073115 (2008).
(
10.1063/1.2975177
) / Appl. Phys. Lett. by G Buchs (2008) -
Heij, C. P., Dixon, D. C., Hadley, P. & Mooij, J. E. Negative differential resistance due to single-electron switching. Appl. Phys. Lett. 74, 1042–1044 (1999).
(
10.1063/1.123449
) / Appl. Phys. Lett. by CP Heij (1999) -
Simonian, N., Li, J. & Likharev, K. Negative differential resistance at sequential single-electron tunnelling through atoms and molecules. Nanotechnology 18, 424006 (2007).
(
10.1088/0957-4484/18/42/424006
) / Nanotechnology by N Simonian (2007) -
Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).
(
10.1126/science.286.5444.1550
) / Science by J Chen (1999) -
Mentovich, E. D. et al. Multipeak negative-differential-resistance molecular device. Small 4, 55–58 (2008).
(
10.1002/smll.200700372
) / Small by ED Mentovich (2008) -
Wu, Y. et al. Three-terminal graphene negative differential resistance devices. ACS Nano 6, 2610–2616 (2012).
(
10.1021/nn205106z
) / ACS Nano by Y Wu (2012) -
Liu, G., Ahsan, S., Khitun, A. G., Lake, R. K. & Balandin, A. A. Graphene-based non-Boolean logic circuits. J. Appl. Phys. 114, 154310 (2013).
(
10.1063/1.4824828
) / J. Appl. Phys. by G Liu (2013) -
Sharma, P., Bernard, L. S., Bazigos, A., Magrez, A. & Ionescu, A. M. Room-temperature negative differential resistance in graphene field effect transistors: experiments and theory. ACS Nano 9, 620–625 (2015).
(
10.1021/nn5059437
) / ACS Nano by P Sharma (2015) -
Hurst, S. L. Multiple-valued logic-its status and its future. IEEE Trans. Comp. c-33, 1160–1179 (1984).
(
10.1109/TC.1984.1676392
) / IEEE Trans. Comp. by SL Hurst (1984) -
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
(
10.1126/science.1244358
) / Science by L Wang (2013) -
Jo, S.-H. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 28, 4824–4831 (2016).
(
10.1002/adma.201600032
) / Adv. Mater. by S-H Jo (2016) -
Shim, J. & Park, J.-H. Optimization of graphene-MoS2 barristor by 3-aminopropyltriethoxysilane (APTES). Org. Electron 33, 172–177 (2016).
(
10.1016/j.orgel.2016.03.019
) / Org. Electron by J Shim (2016) -
Zhang, J., Zhang, M., Sun, R.-Q. & Wang, X. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 124, 10292–10296 (2012).
(
10.1002/ange.201205333
) / Angew. Chem. Int. Ed. by J Zhang (2012) -
Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
(
10.1038/nnano.2014.150
) / Nat. Nanotechnol. by C-H Lee (2014) -
Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).
(
10.1073/pnas.1405435111
) / Proc. Natl Acad. Sci. USA by H Fang (2014) -
Furchi, M. M. et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).
(
10.1021/nl501962c
) / Nano Lett. by MM Furchi (2014) -
Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).
(
10.1038/nnano.2014.167
) / Nat. Nanotechnol. by X Hong (2014) -
Kang, D.-H. et al. An ultrahigh-performance photodetector based on a perovskite–transition-metal-dichalcogenide hybrid structure. Adv. Mater. 28, 7799–7806 (2016).
(
10.1002/adma.201600992
) / Adv. Mater. by D-H Kang (2016) -
Shim, J. et al. Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism. Adv. Mater. 28, 5293–5299 (2016).
(
10.1002/adma.201506004
) / Adv. Mater. by J Shim (2016) -
Takahashi, T., Tokailin, H. & Sagawa, T. Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 32, 8317–8324 (1985).
(
10.1103/PhysRevB.32.8317
) / Phys. Rev. B by T Takahashi (1985) -
Shim, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28, 6985–6992 (2016).
(
10.1002/adma.201601002
) / Adv. Mater. by J Shim (2016) -
Jo, S.-H. et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl)triethoxysilane and triphenylphosphine treatment. Adv. Mater. 28, 6711–6718 (2016).
(
10.1002/adma.201601248
) / Adv. Mater. by S-H Jo (2016) -
Perello, D. J., Chae, S. H., Song, S. & Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015).
(
10.1038/ncomms8809
) / Nat. Commun. by DJ Perello (2015) -
Liu, X. et al. Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature. Sci. Rep. 6, 24920 (2016).
(
10.1038/srep24920
) / Sci. Rep. by X Liu (2016) -
Ho, C. H., Huang, Y. S., Chen, J. L., Dann, T. E. & Tiong, K. K. Electronic structure of ReS2 and ReSe2 from first-principles calculations, photoelectron spectroscopy, and electrolyte electroreflectance. Phys. Rev. B 60, 15766–15771 (1999).
(
10.1103/PhysRevB.60.15766
) / Phys. Rev. B by CH Ho (1999) -
Mikhailova, M. P., Moiseev, K. D. & Yakovlev, Y. P. Interface-induced optical and transport phenomena in type II broken-gap single heterojunctions. Semicond. Sci. Technol. 19, R109–R128 (2004).
(
10.1088/0268-1242/19/10/R03
) / Semicond. Sci. Technol. by MP Mikhailova (2004) -
Zhou, P. et al. Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD. IEEE Photonics Technol. Lett 3, 591–593 (1991).
(
10.1109/68.87923
) / IEEE Photonics Technol. Lett by P Zhou (1991) -
Rideout, V. L. A review of the theory, technology and applications of metal-semiconductor rectifiers. Thin Solid Films 48, 261–291 (1978).
(
10.1016/0040-6090(78)90007-X
) / Thin Solid Films by VL Rideout (1978)
Dates
Type | When |
---|---|
Created | 8 years, 9 months ago (Nov. 7, 2016, 6:12 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 5:06 a.m.) |
Indexed | 1 day, 23 hours ago (Aug. 27, 2025, 11:34 a.m.) |
Issued | 8 years, 9 months ago (Nov. 7, 2016) |
Published | 8 years, 9 months ago (Nov. 7, 2016) |
Published Online | 8 years, 9 months ago (Nov. 7, 2016) |
@article{Shim_2016, title={Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13413}, DOI={10.1038/ncomms13413}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Shim, Jaewoo and Oh, Seyong and Kang, Dong-Ho and Jo, Seo-Hyeon and Ali, Muhammad Hasnain and Choi, Woo-Young and Heo, Keun and Jeon, Jaeho and Lee, Sungjoo and Kim, Minwoo and Song, Young Jae and Park, Jin-Hong}, year={2016}, month=nov }