Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis.

Bibliography

del Rosso, L., Celli, M., & Ulivi, L. (2016). New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nature Communications, 7(1).

Authors 3
  1. Leonardo del Rosso (first)
  2. Milva Celli (additional)
  3. Lorenzo Ulivi (additional)
References 39 Referenced 116
  1. Bartels-Rausch, T. et al. Ice structures, patterns, and processes: A view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012). (10.1103/RevModPhys.84.885) / Rev. Mod. Phys. by T Bartels-Rausch (2012)
  2. Sloan, E. D. & Koh, C. A. Clathrate Hydrates of Natural Gases, 3rd Edition Taylor & Francis (2008). (10.1201/9781420008494)
  3. Falenty, A., Hansen, T. C. & Kuhs, W. F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516, 231–233 (2014). (10.1038/nature14014) / Nature by A Falenty (2014)
  4. Huang, Y. et al. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. Sci. Adv. 2, e1501010 (2016). (10.1126/sciadv.1501010) / Sci. Adv. by Y Huang (2016)
  5. Dyadin, Y. A. et al. Clathrate hydrates of hydrogen and neon. Mendeleev Commun. 9, 209–210 (1999). (10.1070/MC1999v009n05ABEH001104) / Mendeleev Commun. by YA Dyadin (1999)
  6. Mao, W. L. et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002). (10.1126/science.1075394) / Science by WL Mao (2002)
  7. Mak, T. C. & McMullan, R. K. Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. J. Chem. Phys. 42, 2732–2737 (1965). (10.1063/1.1703229) / J. Chem. Phys. by TC Mak (1965)
  8. Ulivi, L. et al. Quantum rattling of molecular hydrogen in clathrate hydrate nanocavities. Phys. Rev. B 76, 161401 (2007). (10.1103/PhysRevB.76.161401) / Phys. Rev. B by L Ulivi (2007)
  9. Xu, M., Ulivi, L., Celli, M., Colognesi, D. & Bačić, Z. Quantum calculation of inelastic neutron scattering spectra of a hydrogen molecule inside a nanoscale cavity based on rigorous treatment of the coupled translation-rotation dynamics. Phys. Rev. B 83, 241403 (2011). (10.1103/PhysRevB.83.241403) / Phys. Rev. B by M Xu (2011)
  10. Xu, M., Ulivi, L., Celli, M., Colognesi, D. & Bačić, Z. Rigorous quantum treatment of inelastic neutron scattering spectra of a heteronuclear diatomic molecule in a nanocavity: HD in the small cage of structure II clathrate hydrate. Chem. Phys. Lett. 563, 1–8 (2013). (10.1016/j.cplett.2013.01.013) / Chem. Phys. Lett. by M Xu (2013)
  11. Celli, M. et al. Experimental inelastic neutron scattering spectrum of hydrogen hexagonal clathrate-hydrate compared with rigorous quantum simulations. J. Chem. Phys. 139, 164507 (2013). (10.1063/1.4826451) / J. Chem. Phys. by M Celli (2013)
  12. Colognesi, D., Celli, M., Ulivi, L., Xu, M. & Bačić, Z. Neutron scattering measurements and computation of the quantum dynamics of hydrogen molecules trapped in the small and large cages of clathrate hydrates. J. Phys. Chem. A 117, 7314–7326 (2013). (10.1021/jp4011845) / J. Phys. Chem. A by D Colognesi (2013)
  13. Giannasi, A., Celli, M., Ulivi, L. & Zoppi, M. Low temperature Raman spectra of hydrogen in simple and binary clathrate hydrates. J. Chem. Phys. 129, 084705 (2008). (10.1063/1.2971185) / J. Chem. Phys. by A Giannasi (2008)
  14. Strobel, T. A., Sloan, E. D. & Koh, C. A. Raman spectroscopic studies of hydrogen clathrate hydrates. J. Phys. Chem. 130, 014506 (2009). (10.1063/1.3046678) / J. Phys. Chem. by TA Strobel (2009)
  15. Giannasi, A., Celli, M., Zoppi, M., Moraldi, M. & Ulivi, L. Experimental and theoretical analysis of the rotational Raman spectrum of hydrogen molecules in clathrate hydrates. J. Chem. Phys. 135, 054506 (2011). (10.1063/1.3618549) / J. Chem. Phys. by A Giannasi (2011)
  16. Zaghloul, M. A., Celli, M., Salem, N. M., Elsheikh, S. M. & Ulivi, L. High pressure synthesis and in situ Raman spectroscopy of H2 and HD clathrate hydrates. J. Chem. Phys. 137, 164320 (2012). (10.1063/1.4762864) / J. Chem. Phys. by MA Zaghloul (2012)
  17. Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. K. Novel H2+H2O clathrates at high pressures. Phys. Rev. Lett. 71, 3150–3153 (1993). (10.1103/PhysRevLett.71.3150) / Phys. Rev. Lett. by WL Vos (1993)
  18. Efimchenko, V. S. et al. New phase in the water-hydrogen system. J. Alloys Comp. 509, S860–S863 (2011). (10.1016/j.jallcom.2010.12.200) / J. Alloys Comp. by VS Efimchenko (2011)
  19. Strobel, T. A., Somayazulu, M. & Hemley, R. J. Phase behavior of H2+H2O at high pressures and low temperatures. J. Phys. Chem. C 115, 4898–4903 (2011). (10.1021/jp1122536) / J. Phys. Chem. C by TA Strobel (2011)
  20. Smirnov, G. S. & Stegailov, V. V. Toward determination of the new hydrogen hydrate clathrate structures. J. Phys. Chem. Lett. 4, 3560–3564 (2013). (10.1021/jz401669d) / J. Phys. Chem. Lett. by GS Smirnov (2013)
  21. Qian, G. R., Lyakhov, A. O., Zhu, Q., Oganov, A. R. & Dong, X. Novel hydrogen hydrate structures under pressure. Sci. Rep. 4, 5606 (2014). (10.1038/srep05606) / Sci. Rep. by GR Qian (2014)
  22. Giannasi, A., Celli, M., Grazzi, F., Ulivi, L. & Zoppi, M. An apparatus for simultaneous thermodynamic and optical measurements, with large temperature excursions. Rev. Sci. Instrum. 79, 013105 (2008). (10.1063/1.2830939) / Rev. Sci. Instrum. by A Giannasi (2008)
  23. Van Kranendonk, J. Solid Hydrogen Plenum Press (1983). (10.1007/978-1-4684-4301-1)
  24. Grazzi, F., Santoro, M., Moraldi, M. & Ulivi, L. Anisotropic interactions of hydrogen molecules from the pressure dependence of the rotational spectrum in the Ar(H2)2 compound. Phys. Rev. Lett. 87, 125506 (2001). (10.1103/PhysRevLett.87.125506) / Phys. Rev. Lett. by F Grazzi (2001)
  25. Grazzi, F., Santoro, M., Moraldi, M. & Ulivi, L. Roton excitations of the hydrogen molecule in the Ar(H2)2 compound. Phys. Rev. B 66, 144303 (2002). (10.1103/PhysRevB.66.144303) / Phys. Rev. B by F Grazzi (2002)
  26. Pimentel, G. C. & Sederholm, C. H. Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J. Chem. Phys. 24, 639–641 (1956). (10.1063/1.1742588) / J. Chem. Phys. by GC Pimentel (1956)
  27. Pruzan, P. Pressure effects on the hydrogen bond in ice up to 80 GPa. J. Mol. Struct. 322, 279–286 (1994). (10.1016/0022-2860(94)87045-4) / J. Mol. Struct. by P Pruzan (1994)
  28. Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. K. Pressure dependence of hydrogen bonding in a novel H2+H2O clathrate. Chem. Phys. Lett. 257, 524–530 (1996). (10.1016/0009-2614(96)00583-0) / Chem. Phys. Lett. by WL Vos (1996)
  29. Lobban, C., Finney, J. L. & Kuhs, W. F. The p-T dependency of the ice II crystal structure and the effect of helium inclusion. J. Chem. Phys. 117, 3928–3934 (2002). (10.1063/1.1495837) / J. Chem. Phys. by C Lobban (2002)
  30. Smirnov, G. S. & Stegailov, V. V. Anomalous diffusion of guest molecules in hydrogen gas hydrates. High Temp. 53, 829–836 (2015). (10.1134/S0018151X15060188) / High Temp. by GS Smirnov (2015)
  31. Bendtsen, J. The rotational and rotation-vibrational Raman spectra of 14N2, 14N15N and 15N2 . J. Raman Spectrosc. 2, 133–145 (1974). (10.1002/jrs.1250020204) / J. Raman Spectrosc. by J Bendtsen (1974)
  32. Ouillon, R., Turc, C., Lemaistre, J. P. & Ranson, P. High resolution Raman spectroscopy in the α and β crystalline phases of N2 . J. Chem. Phys. 93, 3005–3011 (1990). (10.1063/1.458887) / J. Chem. Phys. by R Ouillon (1990)
  33. del Rosso, L. et al. Refined structure of metastable ice XVII from neutron diffraction measurements. J. Phys. Chem. Lett Preprint at https://arxiv.org/abs/1609.04996 (2016).
  34. Do, D. D. Adsorption Analysis: Equilibria and Kinetics Imperial College Press (1998). (10.1142/p111)
  35. Schlichtenmayer, M. & Hirscher, M. The usable capacity of porous materials for hydrogen storage. Appl. Phys. A 122, 379 (2016). (10.1007/s00339-016-9864-6) / Appl. Phys. A by M Schlichtenmayer (2016)
  36. Lokshin, K. A. & Zhao, Y. Fast synthesis method and phase diagram of hydrogen clathrate hydrate. App. Phys. Lett. 88, 131909 (2006). (10.1063/1.2190273) / App. Phys. Lett. by KA Lokshin (2006)
  37. Efimchenko, L. et al. Phase transitions and equilibrium hydrogen content of phases in the water–hydrogen system at pressures to 1.8 kbar. High Press. Res. 26, 439–443 (2006). (10.1080/08957950601105390) / High Press. Res. by L Efimchenko (2006)
  38. Antonov, V. E., Efimchenko, V. S. & Tkacz, M. Phase transitions in the water-hydrogen system at pressures up to 4.7 kbar. J. Phys. Chem. B 113, 779–785 (2009). (10.1021/jp807996h) / J. Phys. Chem. B by VE Antonov (2009)
  39. Choukroun, M. & Grasset, O. Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. J. Chem. Phys. 127, 124506 (2007). (10.1063/1.2768957) / J. Chem. Phys. by M Choukroun (2007)
Dates
Type When
Created 8 years, 9 months ago (Nov. 7, 2016, 6:14 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 5:12 a.m.)
Indexed 1 week, 2 days ago (Aug. 12, 2025, 5:49 p.m.)
Issued 8 years, 9 months ago (Nov. 7, 2016)
Published 8 years, 9 months ago (Nov. 7, 2016)
Published Online 8 years, 9 months ago (Nov. 7, 2016)
Funders 0

None

@article{del_Rosso_2016, title={New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13394}, DOI={10.1038/ncomms13394}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={del Rosso, Leonardo and Celli, Milva and Ulivi, Lorenzo}, year={2016}, month=nov }