Abstract
AbstractCombining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.
Authors
5
- Matthew Yankowitz (first)
- K. Watanabe (additional)
- T. Taniguchi (additional)
- Pablo San-Jose (additional)
- Brian J. LeRoy (additional)
References
28
Referenced
154
-
Geim, A. K. & Grigorieva, I. V. Van der waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Trambly De, L. G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).
(
10.1021/nl902948m
) / Nano Lett. by LG Trambly De (2010) -
McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).
(
10.1088/0034-4885/76/5/056503
) / Rep. Prog. Phys. by E McCann (2013) -
Zhang, J., Triola, C. & Rossi, E. Proximity effect in graphene—topological-insulator heterostructures. Phys. Rev. Lett. 112, 096802 (2014).
(
10.1103/PhysRevLett.112.096802
) / Phys. Rev. Lett. by J Zhang (2014) -
Wang, Z. et al. Strong interface-induced spin—orbit interaction in graphene on WS2 . Nat. Commun. 6, 8339 (2015).
(
10.1038/ncomms9339
) / Nat. Commun. by Z Wang (2015) -
Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J. & van der Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).
(
10.1103/PhysRevB.76.073103
) / Phys. Rev. B by G Giovannetti (2007) -
Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).
(
10.1038/nmat2968
) / Nat. Mater. by J Xue (2011) -
Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).
(
10.1021/nl2005115
) / Nano Lett. by R Decker (2011) -
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
(
10.1038/nphys2272
) / Nat. Phys. by M Yankowitz (2012) -
San-Jose, P., Gutiérrez-Rubio, A., Sturla, M. & Guinea, F. Spontaneous strains and gap in graphene on boron nitride. Phys. Rev. B 90, 075428 (2014).
(
10.1103/PhysRevB.90.075428
) / Phys. Rev. B by P San-Jose (2014) -
van Wijk, M. M., Schuring, A., Katsnelson, M. I. & Fasolino, A. Moiré patterns as a probe of interplanar interactions for graphene on h-BN. Phys. Rev. Lett. 113, 135504 (2014).
(
10.1103/PhysRevLett.113.135504
) / Phys. Rev. Lett. by MM van Wijk (2014) -
Jung, J., DaSilva, A. M., MacDonald, A. H. & Adam, S. Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015).
(
10.1038/ncomms7308
) / Nat. Commun. by J Jung (2015) -
Kumar, H., Er, D., Dong, L., Li, J. & Shenoy, V. B. Elastic deformations in 2D van der Waals heterostructures and their impact on optoelectronic properties: predictions from a multiscale computational approach. Sci. Rep. 5, 10872 (2015).
(
10.1038/srep10872
) / Sci. Rep. by H Kumar (2015) -
Bokdam, M., Amlaki, T., Brocks, G. & Kelly, P. J. Band gaps in incommensurable graphene on hexagonal boron nitride. Phys. Rev. B 89, 201404 (2014).
(
10.1103/PhysRevB.89.201404
) / Phys. Rev. B by M Bokdam (2014) -
San-Jose, P., Gutiérrez-Rubio, A., Sturla, M. & Guinea, F. Electronic structure of spontaneously strained graphene on hexagonal boron nitride. Phys. Rev. B 90, 115152 (2014).
(
10.1103/PhysRevB.90.115152
) / Phys. Rev. B by P San-Jose (2014) -
Mashoff, T. et al. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide. Nano Lett. 10, 461–465 (2010).
(
10.1021/nl903133w
) / Nano Lett. by T Mashoff (2010) -
Klimov, N. N. et al. Electromechanical properties of graphene drumheads. Science 336, 1557–1561 (2012).
(
10.1126/science.1220335
) / Science by NN Klimov (2012) -
Xu, P. et al. New scanning tunneling microscopy technique enables systematic study of the unique electronic transition from graphite to graphene. Carbon 50, 4633–4639 (2012).
(
10.1016/j.carbon.2012.05.050
) / Carbon by P Xu (2012) -
Altenburg, S. J. & Berndt, R. Local work function and STM tip-induced distortion of graphene on Ir(111). New. J. Phys. 16, 053036 (2014).
(
10.1088/1367-2630/16/5/053036
) / New. J. Phys. by SJ Altenburg (2014) -
Meza, J. A., Lubin, C., Thoyer, F. & Cousty, J. Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies. Nanotechnology 26, 255704 (2015).
(
10.1088/0957-4484/26/25/255704
) / Nanotechnology by JA Meza (2015) -
Yankowitz, M. et al. Electric field control of soliton motion and stacking in trilayer graphene. Nat. Mater. 13, 786–789 (2014).
(
10.1038/nmat3965
) / Nat. Mater. by M Yankowitz (2014) -
Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).
(
10.1038/nphys2954
) / Nat. Phys. by CR Woods (2014) -
Sachs, B., Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys. Rev. B 84, 195414 (2011).
(
10.1103/PhysRevB.84.195414
) / Phys. Rev. B by B Sachs (2011) -
Neek-Amal, M. & Peeters, F. M. Graphene on boron-nitride: moiré pattern in the van der Waals energy. Appl. Phys. Lett. 104, 041909 (2014).
(
10.1063/1.4863661
) / Appl. Phys. Lett. by M Neek-Amal (2014) -
Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013).
(
10.1103/PhysRevLett.111.266801
) / Phys. Rev. Lett. by JCW Song (2013) -
Slotman, G. et al. Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys. Rev. Lett. 115, 186801 (2015).
(
10.1103/PhysRevLett.115.186801
) / Phys. Rev. Lett. by G Slotman (2015) -
Boneschanscher, M. P., Hämäläinen, S. K., Liljeroth, P. & Swart, I. Sample corrugation affects the apparent bond lengths in atomic force microscopy. ACS Nano 8, 3006–3014 (2014).
(
10.1021/nn500317r
) / ACS Nano by MP Boneschanscher (2014) -
Stroscio, J. A. & Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 306, 242–247 (2004).
(
10.1126/science.1102370
) / Science by JA Stroscio (2004)
Dates
Type | When |
---|---|
Created | 8 years, 10 months ago (Oct. 20, 2016, 5:17 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 4:58 a.m.) |
Indexed | 4 weeks ago (Aug. 6, 2025, 9:35 a.m.) |
Issued | 8 years, 10 months ago (Oct. 20, 2016) |
Published | 8 years, 10 months ago (Oct. 20, 2016) |
Published Online | 8 years, 10 months ago (Oct. 20, 2016) |
@article{Yankowitz_2016, title={Pressure-induced commensurate stacking of graphene on boron nitride}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13168}, DOI={10.1038/ncomms13168}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Yankowitz, Matthew and Watanabe, K. and Taniguchi, T. and San-Jose, Pablo and LeRoy, Brian J.}, year={2016}, month=oct }