Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe spin Hall effect is a spin–orbit coupling phenomenon, which enables electric generation and detection of spin currents. This relativistic effect provides a way for realizing efficient spintronic devices based on electric manipulation of magnetization through spin torque. However, it has been believed that heavy metals are indispensable for the spin–torque generation. Here we show that the spin Hall effect in Cu, a light metal with weak spin–orbit coupling, is significantly enhanced through natural oxidation. We demonstrate that the spin–torque generation efficiency of a Cu/Ni81Fe19 bilayer is enhanced by over two orders of magnitude by tuning the surface oxidation, reaching the efficiency of Pt/ferromagnetic metal bilayers. This finding illustrates a crucial role of oxidation in the spin Hall effect, opening a route for engineering the spin–torque generator by oxygen control and manipulating magnetization without using heavy metals.

Bibliography

An, H., Kageyama, Y., Kanno, Y., Enishi, N., & Ando, K. (2016). Spin–torque generator engineered by natural oxidation of Cu. Nature Communications, 7(1).

Authors 5
  1. Hongyu An (first)
  2. Yuito Kageyama (additional)
  3. Yusuke Kanno (additional)
  4. Nagisa Enishi (additional)
  5. Kazuya Ando (additional)
References 59 Referenced 162
  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). (10.1103/RevModPhys.76.323) / Rev. Mod. Phys. by I Žutić (2004)
  2. Maekawa S. (ed.) Concepts in Spin Electronics Oxford Univ. Press (2006). (10.1093/acprof:oso/9780198568216.001.0001)
  3. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. 35A, 459–460 (1971). (10.1016/0375-9601(71)90196-4) / Phys. Lett. by MI Dyakonov (1971)
  4. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999). (10.1103/PhysRevLett.83.1834) / Phys. Rev. Lett. by JE Hirsch (1999)
  5. Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003). (10.1126/science.1087128) / Science by S Murakami (2003)
  6. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004). (10.1103/PhysRevLett.92.126603) / Phys. Rev. Lett. by J Sinova (2004)
  7. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004). (10.1126/science.1105514) / Science by YK Kato (2004)
  8. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005). (10.1103/PhysRevLett.94.047204) / Phys. Rev. Lett. by J Wunderlich (2005)
  9. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015). (10.1103/RevModPhys.87.1213) / Rev. Mod. Phys. by J Sinova (2015)
  10. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013). (10.1109/TMAG.2013.2262947) / IEEE Trans. Magn. by A Hoffmann (2013)
  11. Niimi, Y. & Otani, Y. Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review. Rep. Prog. Phys. 78, 124501 (2015). (10.1088/0034-4885/78/12/124501) / Rep. Prog. Phys. by Y Niimi (2015)
  12. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008). (10.1103/PhysRevLett.101.036601) / Phys. Rev. Lett. by K Ando (2008)
  13. Liu, L., Moriyama, T., Ralph, D. & Buhrman, R. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011). (10.1103/PhysRevLett.106.036601) / Phys. Rev. Lett. by L Liu (2011)
  14. Tse, W.-K. & Das Sarma, S. Spin Hall effect in doped semiconductor structures. Phys. Rev. Lett. 96, 056601 (2006). (10.1103/PhysRevLett.96.056601) / Phys. Rev. Lett. by W-K Tse (2006)
  15. Haazen, P. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013). (10.1038/nmat3553) / Nat. Mater. by P Haazen (2013)
  16. Garlid, E. S., Hu, Q. O., Chan, M. K., Palmstrøm, C. J. & Crowell, P. A. Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures. Phys. Rev. Lett. 105, 156602 (2010). (10.1103/PhysRevLett.105.156602) / Phys. Rev. Lett. by ES Garlid (2010)
  17. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014). (10.1103/PhysRevLett.113.196602) / Phys. Rev. Lett. by W Zhang (2014)
  18. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012). (10.1126/science.1218197) / Science by L Liu (2012)
  19. Bhowmik, D., You, L. & Salahuddin, S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat. Nanotechnol. 9, 59–63 (2014). (10.1038/nnano.2013.241) / Nat. Nanotechnol. by D Bhowmik (2014)
  20. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006). (10.1063/1.2199473) / Appl. Phys. Lett. by E Saitoh (2006)
  21. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007). (10.1103/PhysRevLett.98.156601) / Phys. Rev. Lett. by T Kimura (2007)
  22. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006). (10.1038/nature04937) / Nature by SO Valenzuela (2006)
  23. Hahn, C. et al. Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys. Rev. B 87, 174417 (2013). (10.1103/PhysRevB.87.174417) / Phys. Rev. B by C Hahn (2013)
  24. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010). (10.1103/PhysRevLett.104.046601) / Phys. Rev. Lett. by O Mosendz (2010)
  25. Weiler, M. et al. Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013). (10.1103/PhysRevLett.111.176601) / Phys. Rev. Lett. by M Weiler (2013)
  26. d’Allivy Kelly, O. et al. Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl. Phys. Lett. 103, 082408 (2013). (10.1063/1.4819157) / Appl. Phys. Lett. by O d’Allivy Kelly (2013)
  27. Castel, V., Vlietstra, N., van Wees, B. J. & Youssef, J. B. Frequency and power dependence of spin-current emission by spin pumping in a thin-film YIG/Pt system. Phys. Rev. B 86, 134419 (2012). (10.1103/PhysRevB.86.134419) / Phys. Rev. B by V Castel (2012)
  28. Sandweg, C. W. et al. Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett. 106, 216601 (2011). (10.1103/PhysRevLett.106.216601) / Phys. Rev. Lett. by CW Sandweg (2011)
  29. Jiao, H. & Bauer, G. E. W. Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect. Phys. Rev. Lett. 110, 217602 (2013). (10.1103/PhysRevLett.110.217602) / Phys. Rev. Lett. by H Jiao (2013)
  30. Wei, D., Obstbaum, M., Ribow, M., Back, C. & Woltersdorf, G. Spin Hall voltages from a.c. and d.c. spin currents. Nat. Commun. 5, 3768 (2014). (10.1038/ncomms4768) / Nat. Commun. by D Wei (2014)
  31. Czeschka, F. D. et al. Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys. Rev. Lett. 107, 046601 (2011). (10.1103/PhysRevLett.107.046601) / Phys. Rev. Lett. by FD Czeschka (2011)
  32. Mendes, J. et al. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80 . Phys. Rev. B 89, 140406 (2014). (10.1103/PhysRevB.89.140406) / Phys. Rev. B by J Mendes (2014)
  33. Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nat. Mater. 11, 382–390 (2012). (10.1038/nmat3279) / Nat. Mater. by T Jungwirth (2012)
  34. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010). (10.1126/science.1195816) / Science by J Wunderlich (2010)
  35. Wunderlich, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nat. Phys. 5, 675–681 (2009). (10.1038/nphys1359) / Nat. Phys. by J Wunderlich (2009)
  36. Ando, K. et al. Photoinduced inverse spin-Hall effect: conversion of light-polarization information into electric voltage. Appl. Phys. Lett. 96, 082502 (2010). (10.1063/1.3327809) / Appl. Phys. Lett. by K Ando (2010)
  37. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010). (10.1038/nmat2856) / Nat. Mater. by K Uchida (2010)
  38. Kirihara, A. et al. Spin-current-driven thermoelectric coating. Nat. Mater. 11, 686–689 (2012). (10.1038/nmat3360) / Nat. Mater. by A Kirihara (2012)
  39. Wang, H. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014). (10.1103/PhysRevLett.112.197201) / Phys. Rev. Lett. by H Wang (2014)
  40. Qiu, X. et al. Spin-orbit-torque engineering via oxygen manipulation. Nat. Nanotechnol. 10, 333–338 (2015). (10.1038/nnano.2015.18) / Nat. Nanotechnol. by X Qiu (2015)
  41. Zhang, W., Han, W., Jiang, X., Yang, S.-H. & Parkin, S. S. Role of transparency of platinum-ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nat. Phys. 11, 496–502 (2015). (10.1038/nphys3304) / Nat. Phys. by W Zhang (2015)
  42. Pai, C.-F., Ou, Y., Vilela-Leão, L. H., Ralph, D. C. & Buhrman, R. A. Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92, 064426 (2015). (10.1103/PhysRevB.92.064426) / Phys. Rev. B by C-F Pai (2015)
  43. Jungfleisch, M. B. et al. Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between nonmagnetic materials. Phys. Rev. B 93, 224419 (2016). (10.1103/PhysRevB.93.224419) / Phys. Rev. B by MB Jungfleisch (2016)
  44. Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93, 220405(R) (2016). (10.1103/PhysRevB.93.220405) / Phys. Rev. B by Y Ou (2016)
  45. Vranken, J., Van Haesendonck, C. & Bruynseraede, Y. Enhanced magnetic surface scattering of weakly localized electrons. Phys. Rev. B 37, 8502–8505 (1988). (10.1103/PhysRevB.37.8502) / Phys. Rev. B by J Vranken (1988)
  46. Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3175–3197 (2011). (10.1098/rsta.2010.0336) / Philos. Trans. A Math. Phys. Eng. Sci. by P Gambardella (2011)
  47. Sánchez, J. R. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013). (10.1038/ncomms3944) / Nat. Commun. by JR Sánchez (2013)
  48. Manchon, A. Spin Hall effect versus Rashba torque: a diffusive approach. Preprint at http://lanl.arXiv.org/abs/1204.4869 (2012).
  49. Kasap, S. O. Principles of Electronic Materials and Devices McGraw-Hill (2006).
  50. Emori, S. et al. Interfacial spin-orbit torque without bulk spin-orbit coupling. Phys. Rev. B 93, 180402(R) (2016). (10.1103/PhysRevB.93.180402) / Phys. Rev. B by S Emori (2016)
  51. Zhang, S. S.-L., Vignale, G. & Zhang, S. Anisotropic magnetoresistance driven by surface spin-orbit scattering. Phys. Rev. B 92, 024412 (2015). (10.1103/PhysRevB.92.024412) / Phys. Rev. B by SS-L Zhang (2015)
  52. Niimi, Y. et al. Experimental verification of comparability between spin-orbit and spin-diffusion lengths. Phys. Rev. Lett. 110, 016805 (2013). (10.1103/PhysRevLett.110.016805) / Phys. Rev. Lett. by Y Niimi (2013)
  53. Gu, B. et al. Surface-assisted spin Hall effect in Au films with Pt impurities. Phys. Rev. Lett. 105, 216401 (2010). (10.1103/PhysRevLett.105.216401) / Phys. Rev. Lett. by B Gu (2010)
  54. Keil, P., Lützenkirchen-Hecht, D. & Frahm, R. Investigation of room temperature oxidation of Cu in air by Yoneda-XAFS. AIP Conf. Proc. 882, 490–492 (2007). (10.1063/1.2644569) / AIP Conf. Proc. by P Keil (2007)
  55. Apen, E., Rogers, B. & Sellers, J. A. X-ray photoelectron spectroscopy characterization of the oxidation of electroplated and sputter deposited copper surfaces. J. Vac. Sci. Technol. A 16, 1227–1232 (1998). (10.1116/1.581264) / J. Vac. Sci. Technol. A by E Apen (1998)
  56. Platzman, I., Brener, R., Haick, H. & Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C 112, 1101–1108 (2008). (10.1021/jp076981k) / J. Phys. Chem. C by I Platzman (2008)
  57. Drobny, V. & Pulfrey, L. Properties of reactively-sputtered copper oxide thin films. Thin Solid Films 61, 89–98 (1979). (10.1016/0040-6090(79)90504-2) / Thin Solid Films by V Drobny (1979)
  58. Demasius, K.-U. et al. Enhanced spin-orbit torques by oxygen incorporation in tungsten films. Nat. Commun. 7, 10644 (2016). (10.1038/ncomms10644) / Nat. Commun. by K-U Demasius (2016)
  59. Nguyen, M.-H., Ralph, D. C. & Buhrman, R. A. Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity. Phys. Rev. Lett. 116, 126601 (2016). (10.1103/PhysRevLett.116.126601) / Phys. Rev. Lett. by M-H Nguyen (2016)
Dates
Type When
Created 8 years, 10 months ago (Oct. 11, 2016, 5:17 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 4:57 a.m.)
Indexed 1 day, 3 hours ago (Aug. 29, 2025, 5:46 a.m.)
Issued 8 years, 10 months ago (Oct. 11, 2016)
Published 8 years, 10 months ago (Oct. 11, 2016)
Published Online 8 years, 10 months ago (Oct. 11, 2016)
Funders 0

None

@article{An_2016, title={Spin–torque generator engineered by natural oxidation of Cu}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms13069}, DOI={10.1038/ncomms13069}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={An, Hongyu and Kageyama, Yuito and Kanno, Yusuke and Enishi, Nagisa and Ando, Kazuya}, year={2016}, month=oct }