Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractTransition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

Bibliography

Palacios-Berraquero, C., Barbone, M., Kara, D. M., Chen, X., Goykhman, I., Yoon, D., Ott, A. K., Beitner, J., Watanabe, K., Taniguchi, T., Ferrari, A. C., & Atatüre, M. (2016). Atomically thin quantum light-emitting diodes. Nature Communications, 7(1).

Authors 12
  1. Carmen Palacios-Berraquero (first)
  2. Matteo Barbone (additional)
  3. Dhiren M. Kara (additional)
  4. Xiaolong Chen (additional)
  5. Ilya Goykhman (additional)
  6. Duhee Yoon (additional)
  7. Anna K. Ott (additional)
  8. Jan Beitner (additional)
  9. Kenji Watanabe (additional)
  10. Takashi Taniguchi (additional)
  11. Andrea C. Ferrari (additional)
  12. Mete Atatüre (additional)
References 38 Referenced 287
  1. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002). (10.1126/science.1066790) / Science by Z Yuan (2002)
  2. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 6, 299–303 (2012). (10.1038/nphoton.2012.75) / Nat. Photonics by N Mizuochi (2012)
  3. Lohrmann, A. et al. Single-photon emitting diode in silicon carbide. Nat. Commun. 6, 7783 (2015). (10.1038/ncomms8783) / Nat. Commun. by A Lohrmann (2015)
  4. Nothaft, M. et al. Electrically driven photon antibunching from a single molecule at room temperature. Nat Commun. 3, 628 (2012). (10.1038/ncomms1637) / Nat Commun. by M Nothaft (2012)
  5. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). (10.1038/nphoton.2010.186) / Nat. Photonics by F Bonaccorso (2010)
  6. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2014). (10.1039/C4NR01600A) / Nanoscale by AC Ferrari (2014)
  7. Ye, Y. et al. Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015). (10.1038/nphoton.2015.197) / Nat. Photonics by Y Ye (2015)
  8. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010). (10.1021/nn901703e) / ACS Nano by Z Sun (2010)
  9. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). (10.1038/nature10067) / Nature by M Liu (2011)
  10. Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 9, 511–514 (2015). (10.1038/nphoton.2015.122) / Nat. Photonics by CT Phare (2015)
  11. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). (10.1038/nnano.2014.215) / Nat. Nanotechnol. by FHL Koppens (2014)
  12. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014). (10.1038/nphoton.2014.271) / Nat. Photonics by F Xia (2014)
  13. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nat. Nanotechnol. 10, 491–496 (2015). (10.1038/nnano.2015.60) / Nat. Nanotechnol. by A Srivastava (2015)
  14. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015). (10.1038/nnano.2015.75) / Nat. Nanotechnol. by Y-M He (2015)
  15. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015). (10.1038/nnano.2015.67) / Nat. Nanotechnol. by M Koperski (2015)
  16. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015). (10.1038/nnano.2015.79) / Nat. Nanotechnol. by C Chakraborty (2015)
  17. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347 (2015). (10.1364/OPTICA.2.000347) / Optica by P Tonndorf (2015)
  18. Tran, T. T., Bray, K., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2015). (10.1038/nnano.2015.242) / Nat. Nanotechnol. by TT Tran (2015)
  19. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2011). (10.1021/nn2024557) / ACS Nano by Z Yin (2011)
  20. Wang, H., Zhang, C., Chan, W., Tiwari, S. & Rana, F. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun. 6, 8831 (2015). (10.1038/ncomms9831) / Nat. Commun. by H Wang (2015)
  21. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014). (10.1038/nnano.2014.26) / Nat. Nanotechnol. by JS Ross (2014)
  22. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nat. Nanotechnol. by BWH Baugher (2014)
  23. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 9, 257–261 (2014). (10.1038/nnano.2014.14) / Nat. Nanotechnol. by A Pospischil (2014)
  24. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015). (10.1038/nmat4205) / Nat. Mater. by F Withers (2015)
  25. Zhou, B. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013). (10.1021/nn305275h) / ACS Nano by B Zhou (2013)
  26. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nat. Nanotechnol. 8, 634–638 (2013). (10.1038/nnano.2013.151) / Nat. Nanotechnol. by AM Jones (2013)
  27. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 . Phys. Rev. B 90, (2014). (10.1103/PhysRevB.90.075413)
  28. Kumar, S., Kaczmarczyk, A. & Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2 . Nano Lett. 15, 7567–7573 (2015). (10.1021/acs.nanolett.5b03312) / Nano Lett. by S Kumar (2015)
  29. Hansom, J., Schulte, C. H. H., Matthiesen, C., Stanley, M. J. & Atatüre, M. Frequency stabilization of the zero-phonon line of a quantum dot via phonon-assisted active feedback. Appl. Phys. Lett. 105, 172107 (2014). (10.1063/1.4901045) / Appl. Phys. Lett. by J Hansom (2014)
  30. Acosta, V. M. et al. Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 206401 (2012). (10.1103/PhysRevLett.108.206401) / Phys. Rev. Lett. by VM Acosta (2012)
  31. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). (10.1063/1.3610677) / Rev. Sci. Instrum. by MD Eisaman (2011)
  32. Warburton, R. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000). (10.1038/35016030) / Nature by R Warburton (2000)
  33. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007). (10.1126/science.1148092) / Science by KC Nowack (2007)
  34. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010). (10.1038/nature09078) / Nature by CL Salter (2010)
  35. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004). (10.1038/nmat1134) / Nat. Mater. by K Watanabe (2004)
  36. Casiraghi, C. et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007). (10.1021/nl071168m) / Nano Lett. by C Casiraghi (2007)
  37. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). (10.1038/nnano.2013.46) / Nat. Nanotechnol. by AC Ferrari (2013)
  38. Bonaccorso, F. et al. Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012). (10.1016/S1369-7021(13)70014-2) / Mater. Today by F Bonaccorso (2012)
Dates
Type When
Created 8 years, 11 months ago (Sept. 26, 2016, 8:17 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 5:06 a.m.)
Indexed 14 hours, 32 minutes ago (Aug. 27, 2025, 12:25 p.m.)
Issued 8 years, 11 months ago (Sept. 26, 2016)
Published 8 years, 11 months ago (Sept. 26, 2016)
Published Online 8 years, 11 months ago (Sept. 26, 2016)
Funders 0

None

@article{Palacios_Berraquero_2016, title={Atomically thin quantum light-emitting diodes}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms12978}, DOI={10.1038/ncomms12978}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Palacios-Berraquero, Carmen and Barbone, Matteo and Kara, Dhiren M. and Chen, Xiaolong and Goykhman, Ilya and Yoon, Duhee and Ott, Anna K. and Beitner, Jan and Watanabe, Kenji and Taniguchi, Takashi and Ferrari, Andrea C. and Atatüre, Mete}, year={2016}, month=sep }