Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe aberration-corrected scanning transmission electron microscope (STEM) has emerged as a key tool for atomic resolution characterization of materials, allowing the use of imaging modes such as Z-contrast and spectroscopic mapping. The STEM has not been regarded as optimal for the phase-contrast imaging necessary for efficient imaging of light materials. Here, recent developments in fast electron detectors and data processing capability is shown to enable electron ptychography, to extend the capability of the STEM by allowing quantitative phase images to be formed simultaneously with incoherent signals. We demonstrate this capability as a practical tool for imaging complex structures containing light and heavy elements, and use it to solve the structure of a beam-sensitive carbon nanostructure. The contrast of the phase image contrast is maximized through the post-acquisition correction of lens aberrations. The compensation of defocus aberrations is also used for the measurement of three-dimensional sample information through post-acquisition optical sectioning.

Bibliography

Yang, H., Rutte, R. N., Jones, L., Simson, M., Sagawa, R., Ryll, H., Huth, M., Pennycook, T. J., Green, M. L. H., Soltau, H., Kondo, Y., Davis, B. G., & Nellist, P. D. (2016). Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nature Communications, 7(1).

Authors 13
  1. H. Yang (first)
  2. R. N. Rutte (additional)
  3. L. Jones (additional)
  4. M. Simson (additional)
  5. R. Sagawa (additional)
  6. H. Ryll (additional)
  7. M. Huth (additional)
  8. T. J. Pennycook (additional)
  9. M.L.H. Green (additional)
  10. H. Soltau (additional)
  11. Y. Kondo (additional)
  12. B. G. Davis (additional)
  13. P. D. Nellist (additional)
References 54 Referenced 221
  1. Cowley, J. M. Diffraction Physics Elsevier (1995).
  2. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic-resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995). (10.1017/S003358350000305X) / Q. Rev. Biophys. by R Henderson (1995)
  3. Nagayama, K. & Danev, R. Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures. Biophys. Rev. 1, 37–42 (2009). (10.1007/s12551-008-0006-z) / Biophys. Rev. by K Nagayama (2009)
  4. Lichte, H., Reibold, M., Brand, K. & Lehmann, M. Ferroelectric electron holography. Ultramicroscopy 93, 199–212 (2002). (10.1016/S0304-3991(02)00277-2) / Ultramicroscopy by H Lichte (2002)
  5. Linck, M., Freitag, B., Kujawa, S., Lehmann, M. & Niermann, T. State of the art in atomic resolution off-axis electron holography. Ultramicroscopy 116, 13–23 (2012). (10.1016/j.ultramic.2012.01.019) / Ultramicroscopy by M Linck (2012)
  6. Haider, M. et al. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998). (10.1016/S0304-3991(98)00048-5) / Ultramicroscopy by M Haider (1998)
  7. Krivanek, O. L., Dellby, N. & Lupini, A. R. Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999). (10.1016/S0304-3991(99)00013-3) / Ultramicroscopy by OL Krivanek (1999)
  8. Nellist, P. D. & Pennycook, S. J. The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imaging Electron Phys. 113, 147–203 (2000). (10.1016/S1076-5670(00)80013-0) / Adv. Imaging Electron Phys. by PD Nellist (2000)
  9. Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949). (10.1063/1.1698233) / J. Appl. Phys. by O Scherzer (1949)
  10. Jia, C.-L., Lentzen, M. & Urban, K. High-resolution transmission electron microscopy using negative spherical aberration. Microsc. Microanal. 10, 174–184 (2004). (10.1017/S1431927604040425) / Microsc. Microanal. by C-L Jia (2004)
  11. Saxton, W. Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. Scanning Microsc. 2, 213–224 (1988). / Scanning Microsc. by W Saxton (1988)
  12. Cowley, J. M. Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969). (10.1063/1.1652901) / Appl. Phys. Lett. by JM Cowley (1969)
  13. Maiden, A. M., Rodenburg, J. M. & Humphry, M. J. Optical ptychography: a practical implementation with useful resolution. Opt. Lett. 35, 2585–2587 (2010). (10.1364/OL.35.002585) / Opt. Lett. by AM Maiden (2010)
  14. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008). (10.1126/science.1158573) / Science by P Thibault (2008)
  15. Maiden, A. M., Morrison, G. R., Kaulich, B., Gianoncelli, A. & Rodenburg, J. M. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nat. Commun. 4, 1669 (2013). (10.1038/ncomms2640) / Nat. Commun. by AM Maiden (2013)
  16. Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010). (10.1038/nature09419) / Nature by M Dierolf (2010)
  17. Rodenburg, J. M., McCallum, B. C. & Nellist, P. D. Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy 48, 304–314 (1993). (10.1016/0304-3991(93)90105-7) / Ultramicroscopy by JM Rodenburg (1993)
  18. Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg, J. M. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2012). (10.1038/ncomms1733) / Nat. Commun. by MJ Humphry (2012)
  19. D’Alfonso, A. J. et al. Deterministic electron ptychography at atomic resolution. Phys. Rev. B 89, 064101 (2014). (10.1103/PhysRevB.89.064101) / Phys. Rev. B by AJ D’Alfonso (2014)
  20. Putkunz, C. T. et al. Atom-scale ptychographic electron diffractive imaging of boron nitride cones. Phys. Rev. Lett. 108, 073901 (2012). (10.1103/PhysRevLett.108.073901) / Phys. Rev. Lett. by CT Putkunz (2012)
  21. Pennycook, T. J. et al. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. Ultramicroscopy 151, 160–167 (2015). (10.1016/j.ultramic.2014.09.013) / Ultramicroscopy by TJ Pennycook (2015)
  22. Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012). (10.1038/nphys2337) / Nat. Phys. by N Shibata (2012)
  23. Nellist, P. D. Electron microscopy: atomic resolution comes into phase. Nat. Phys. 8, 586–587 (2012). (10.1038/nphys2357) / Nat. Phys. by PD Nellist (2012)
  24. McCallum, B. C., Landauer, M. N. & Rodenburg, J. M. Complex image reconstruction of weak specimens from a three-sector detector in the STEM. Optik 101, 53–62 (1995). / Optik by BC McCallum (1995)
  25. Brown, H. G. et al. Structure retrieval with fast electrons using segmented detectors. Phys. Rev. B 93, 134116 (2016). (10.1103/PhysRevB.93.134116) / Phys. Rev. B by HG Brown (2016)
  26. Yang, H., Pennycook, T. J. & Nellist, P. D. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions. Ultramicroscopy 151, 232–239 (2015). (10.1016/j.ultramic.2014.10.013) / Ultramicroscopy by H Yang (2015)
  27. Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 339, 521–553 (1992). / Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. by JM Rodenburg (1992)
  28. Chapman, H. N. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution. Ultramicroscopy 66, 153–172 (1996). (10.1016/S0304-3991(96)00084-8) / Ultramicroscopy by HN Chapman (1996)
  29. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009). (10.1016/j.ultramic.2009.05.012) / Ultramicroscopy by AM Maiden (2009)
  30. Hüe, F., Rodenburg, J. M., Maiden, A. M., Sweeney, F. & Midgley, P. A. Wave-front phase retrieval in transmission electron microscopy via ptychography. Phys. Rev. B 82, 121415 (2010). (10.1103/PhysRevB.82.121415) / Phys. Rev. B by F Hüe (2010)
  31. Maiden, A. M., Sarahan, M. C., Stagg, M. D., Schramm, S. M. & Humphry, M. J. Quantitative electron phase imaging with high sensitivity and an unlimited field of view. Sci. Rep. 5, 14690 (2015). (10.1038/srep14690) / Sci. Rep. by AM Maiden (2015)
  32. Hirahara, K. et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85, 5384–5387 (2000). (10.1103/PhysRevLett.85.5384) / Phys. Rev. Lett. by K Hirahara (2000)
  33. Koshino, M. et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nat. Chem. 2, 117–124 (2010). (10.1038/nchem.482) / Nat. Chem. by M Koshino (2010)
  34. Colliex, C. et al. Capturing the signature of single atoms with the tiny probe of a STEM. Ultramicroscopy 123, 80–89 (2012). (10.1016/j.ultramic.2012.04.003) / Ultramicroscopy by C Colliex (2012)
  35. Suenaga, K. et al. Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1, 415–418 (2009). (10.1038/nchem.282) / Nat. Chem. by K Suenaga (2009)
  36. Arenal, R. et al. Atomic configuration of nitrogen-doped single-walled carbon nanotubes. Nano Lett. 14, 5509–5516 (2014). (10.1021/nl501645g) / Nano Lett. by R Arenal (2014)
  37. Nicholls, R. J. et al. Direct imaging and chemical identification of the encapsulated metal atoms in bimetallic endofullerene peapods. ACS Nano 4, 3943–3948 (2010). (10.1021/nn100823e) / ACS Nano by RJ Nicholls (2010)
  38. Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278–281 (2011). (10.1038/nmat2957) / Nat. Mater. by R Ishikawa (2011)
  39. Findlay, S. D. et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 10–13 (2009). (10.1063/1.3265946) / Appl. Phys. Lett. by SD Findlay (2009)
  40. Waddell, E. & Chapman, J. Linear imaging of strong phase objects using asymmetrical detectors in STEM. Optik 54, 83–96 (1979). / Optik by E Waddell (1979)
  41. Müller, K. et al. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat. Commun. 5, 5653 (2014). (10.1038/ncomms6653) / Nat. Commun. by K Müller (2014)
  42. Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012). (10.1364/JOSAA.29.001606) / J. Opt. Soc. Am. A by AM Maiden (2012)
  43. Li, P., Batey, D. J., Edo, T. B. & Rodenburg, J. M. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography. Ultramicroscopy 158, 1–7 (2015). (10.1016/j.ultramic.2015.06.010) / Ultramicroscopy by P Li (2015)
  44. Van Dyck, D. & Chen, F.-R. ‘Big Bang’ tomography as a new route to atomic-resolution electron tomography. Nature 486, 243–246 (2012). (10.1038/nature11074) / Nature by D Van Dyck (2012)
  45. Meyer, R. R., Kirkland, A. I. & Saxton, W. O. A new method for the determination of the wave aberration function for high resolution TEM. Ultramicroscopy 92, 89–109 (2002). (10.1016/S0304-3991(02)00071-2) / Ultramicroscopy by RR Meyer (2002)
  46. Cosgriff, E. C. et al. Image contrast in aberration-corrected scanning confocal electron microscopy. Adv. Imaging Electron Phys. 162, 45–76 (2010). (10.1016/S1076-5670(10)62002-2) / Adv. Imaging Electron Phys. by EC Cosgriff (2010)
  47. van Benthem, K. et al. Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 1062–1068 (2006). (10.1016/j.ultramic.2006.04.020) / Ultramicroscopy by K van Benthem (2006)
  48. Yang, H. et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. Nat. Commun. 6, 7266 (2015). (10.1038/ncomms8266) / Nat. Commun. by H Yang (2015)
  49. Ishikawa, R., Lupini, A. R., Hinuma, Y. & Pennycook, S. J. Large-angle illumination STEM: toward three-dimensional atom-by-atom imaging. Ultramicroscopy 151, 122–129 (2015). (10.1016/j.ultramic.2014.11.009) / Ultramicroscopy by R Ishikawa (2015)
  50. Ciston, J. et al. Surface determination through atomically resolved secondary-electron imaging. Nat. Commun. 6, 7358 (2015). (10.1038/ncomms8358) / Nat. Commun. by J Ciston (2015)
  51. Kirkland, E. J. Improved high resolution image processing of bright field electron micrographs. Ultramicroscopy 15, 151–172 (1984). (10.1016/0304-3991(84)90037-8) / Ultramicroscopy by EJ Kirkland (1984)
  52. Strüder, L. in Synchrotron Light Sources and Free-Electron Lasers 1–31Springer International Publishing (2015). (10.1007/978-3-319-04507-8_38-1)
  53. Ryll, H. et al. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. J. Instrum. 11, P04006–P04006 (2016). (10.1088/1748-0221/11/04/P04006) / J. Instrum. by H Ryll (2016)
  54. Schmidt, J. et al. Extending the dynamic range of fully depleted pnCCDs. J. Instrum. 9, P10008–P10008 (2014). (10.1088/1748-0221/9/10/P10008) / J. Instrum. by J Schmidt (2014)
Dates
Type When
Created 9 years ago (Aug. 26, 2016, 5:22 a.m.)
Deposited 2 years, 8 months ago (Jan. 4, 2023, 5:31 a.m.)
Indexed 4 days, 22 hours ago (Aug. 30, 2025, 1:04 p.m.)
Issued 9 years ago (Aug. 26, 2016)
Published 9 years ago (Aug. 26, 2016)
Published Online 9 years ago (Aug. 26, 2016)
Funders 0

None

@article{Yang_2016, title={Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms12532}, DOI={10.1038/ncomms12532}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Yang, H. and Rutte, R. N. and Jones, L. and Simson, M. and Sagawa, R. and Ryll, H. and Huth, M. and Pennycook, T. J. and Green, M.L.H. and Soltau, H. and Kondo, Y. and Davis, B. G. and Nellist, P. D.}, year={2016}, month=aug }