Abstract
AbstractA microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials.
References
57
Referenced
207
-
Guo, Y. et al. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 106, 103109 (2015).
(
10.1063/1.4914968
) / Appl. Phys. Lett. by Y Guo (2015) -
Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).
(
10.1038/ncomms3642
) / Nat. Commun. by H Qiu (2013) -
Zhou, C. et al. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 7, 8695–8700 (2015).
(
10.1039/C5NR01072A
) / Nanoscale by C Zhou (2015) -
Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).
(
10.1126/science.1250140
) / Science by KF Mak (2014) -
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
(
10.1038/nnano.2010.279
) / Nat. Nanotechnol. by B Radisavljevic (2011) -
Liu, X. et al. Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013).
(
10.1038/ncomms2803
) / Nat. Commun. by X Liu (2013) -
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
(
10.1038/nnano.2012.193
) / Nat. Nanotechnol. by QH Wang (2012) -
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).
(
10.1038/nnano.2014.215
) / Nat. Nanotechnol. by FHL Koppens (2014) -
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497–501 (2013).
(
10.1038/nnano.2013.100
) / Nat. Nanotechnol. by O Lopez-Sanchez (2013) -
Li, W. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 90, 195434 (2014).
(
10.1103/PhysRevB.90.195434
) / Phys. Rev. B by W Li (2014) -
Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).
(
10.1126/science.1250564
) / Science by X Yin (2014) -
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).
(
10.1038/nphoton.2014.271
) / Nat. Photon. by F Xia (2014) -
Loan, P. T. K. et al. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv. Mater. 26, 4838–4844 (2014).
(
10.1002/adma.201401084
) / Adv. Mater. by PTK Loan (2014) -
Zhang, Y. et al. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 27, 935–939 (2015).
(
10.1002/adma.201404568
) / Adv. Mater. by Y Zhang (2015) -
Perkins, F. K. et al. Chemical vapor sensing with monolayer MoS2 . Nano Lett. 13, 668–673 (2013).
(
10.1021/nl3043079
) / Nano Lett. by FK Perkins (2013) -
Late, D. J. et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013).
(
10.1021/nn400026u
) / ACS Nano by DJ Late (2013) -
Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).
(
10.1021/nl403661s
) / Nano Lett. by D Voiry (2013) -
Chang, Y.-H. et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013).
(
10.1002/adma.201202920
) / Adv. Mater. by Y-H Chang (2013) -
Smith, A. J. et al. Molybdenum sulfide supported on crumpled graphene balls for electrocatalytic hydrogen production. Adv. Energy Mater. 4, 1400398 (2014).
(
10.1002/aenm.201400398
) / Adv. Energy Mater. by AJ Smith (2014) -
Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).
(
10.1126/science.1215868
) / Science by HI Karunadasa (2012) -
Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).
(
10.1126/science.1141483
) / Science by TF Jaramillo (2007) -
Chen, Y., Tan, C., Zhang, H. & Wang, L. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 44, 2681–2701 (2015).
(
10.1039/C4CS00300D
) / Chem. Soc. Rev. by Y Chen (2015) -
Sun, G. et al. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54, 4651–4656 (2015).
(
10.1002/anie.201411533
) / Angew. Chem. Int. Ed. by G Sun (2015) -
Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).
(
10.1038/nnano.2015.40
) / Nat. Nanotechnol. by M Acerce (2015) -
Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).
(
10.1038/nature13792
) / Nature by W Wu (2014) -
Huang, X., Zeng, Z. & Zhang, H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013).
(
10.1039/c2cs35387c
) / Chem. Soc. Rev. by X Huang (2013) -
Wang, H., Yuan, H., Sae Hong, S., Li, Y. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).
(
10.1039/C4CS00287C
) / Chem. Soc. Rev. by H Wang (2015) -
Sakashita, Y. Effects of surface orientation and crystallinity of alumina supports on the microstructures of molybdenum oxides and sulfides. Surf. Sci. 489, 45–58 (2001).
(
10.1016/S0039-6028(01)01127-X
) / Surf. Sci. by Y Sakashita (2001) -
Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).
(
10.1038/nmat3673
) / Nat. Mater. by S Najmaei (2013) -
Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
(
10.1002/adma.201104798
) / Adv. Mater. by YH Lee (2012) -
Lin, Z. et al. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5, 18596 (2015).
(
10.1038/srep18596
) / Sci. Rep. by Z Lin (2015) -
Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).
(
10.1021/nl400258t
) / Nano Lett. by D Kong (2013) -
Jung, Y. et al. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2 . Nano Lett. 14, 6842–6849 (2014).
(
10.1021/nl502570f
) / Nano Lett. by Y Jung (2014) -
Hansen, L. P., Johnson, E., Brorson, M. & Helveg, S. Growth mechanism for single- and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 118, 22768–22773 (2014).
(
10.1021/jp5069279
) / J. Phys. Chem. C by LP Hansen (2014) -
Liu, K. K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).
(
10.1021/nl2043612
) / Nano Lett. by KK Liu (2012) -
Ramachandramoorthy, R., Bernal, R. & Espinosa, H. D. Pushing the envelope of in situ transmission electron microscopy. ACS Nano 9, 4675–4685 (2015).
(
10.1021/acsnano.5b01391
) / ACS Nano by R Ramachandramoorthy (2015) -
Fei, L. et al. Direct observation of carbon nanostructure growth at liquid-solid interfaces. Chem. Commun. 50, 826–828 (2014).
(
10.1039/C3CC46264A
) / Chem. Commun. by L Fei (2014) -
Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).
(
10.1126/science.1254051
) / Science by MH Nielsen (2014) -
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).
(
10.1126/science.1219185
) / Science by H-G Liao (2012) -
Boston, R., Schnepp, Z., Nemoto, Y., Sakka, Y. & Hall, S. R. In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344, 623–626 (2014).
(
10.1126/science.1251594
) / Science by R Boston (2014) -
Brito, J. L., Ilija, M. & Hernández, P. Thermal and reductive decomposition of ammonium thiomolybdates. Thermochim. Acta 256, 325–338 (1995).
(
10.1016/0040-6031(94)02178-Q
) / Thermochim. Acta by JL Brito (1995) -
Verble, J. L., Wietling, T. J. & Reed, P. R. Rigid-layer lattice vibrations and van der Waals bonding in hexagonal MoS2 . Solid State Commun. 11, 941–944 (1972).
(
10.1016/0038-1098(72)90294-3
) / Solid State Commun. by JL Verble (1972) -
Stockmann, R. M., Zandbergen, H. W., van Langeveld, A. D. & Moulijn, J. A. Investigation of MoS2 on γ-Al2O3 by HREM with atomic resolution. J. Mol. Catal. A Chem. 102, 147–161 (1995).
(
10.1016/1381-1169(95)00111-5
) / J. Mol. Catal. A Chem. by RM Stockmann (1995) -
de Jong, K. P. et al. High-resolution electron tomography study of an industrial Ni-Mo/gamma-Al2O3 hydrotreating catalyst. J. Phys. Chem. B 110, 10209–10212 (2006).
(
10.1021/jp061584f
) / J. Phys. Chem. B by KP de Jong (2006) -
Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
(
10.1038/nchem.1589
) / Nat. Chem. by M Chhowalla (2013) -
De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).
(
10.1126/science.aaa6760
) / Science by JJ De Yoreo (2015) -
Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).
(
10.1126/science.1219643
) / Science by D Li (2012) -
Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005).
(
10.1038/nature04165
) / Nature by Y Yin (2005) -
Shi, Y. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).
(
10.1021/nl204562j
) / Nano Lett. by Y Shi (2012) -
Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).
(
10.1073/pnas.1316792110
) / Proc. Natl Acad. Sci. USA by H Wang (2013) -
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).
(
10.1021/nn1003937
) / ACS Nano by C Lee (2010) -
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comput. Mater. Sci. by G Kresse (1996) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blöchl (1994) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Reuter, K. & Scheffler, M. Composition, structure and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).
(
10.1103/PhysRevB.65.035406
) / Phys. Rev. B by K Reuter (2001)
Dates
Type | When |
---|---|
Created | 9 years, 1 month ago (July 14, 2016, 8:06 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:11 a.m.) |
Indexed | 2 weeks, 1 day ago (Aug. 7, 2025, 5:03 a.m.) |
Issued | 9 years, 1 month ago (July 14, 2016) |
Published | 9 years, 1 month ago (July 14, 2016) |
Published Online | 9 years, 1 month ago (July 14, 2016) |
@article{Fei_2016, title={Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms12206}, DOI={10.1038/ncomms12206}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Fei, Linfeng and Lei, Shuijin and Zhang, Wei-Bing and Lu, Wei and Lin, Ziyuan and Lam, Chi Hang and Chai, Yang and Wang, Yu}, year={2016}, month=jul }