Abstract
AbstractInterfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01–1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.
References
47
Referenced
166
-
Verdaguer, A., Sacha, G. M., Bluhm, H. & Salmeron, M. Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106, 1478–1510 (2006).
(
10.1021/cr040376l
) / Chem. Rev. by A Verdaguer (2006) -
Li, Q., Song, J., Besenbacher, F. & Dong, M. D. Two-dimensional material confined water. Accounts Chem. Res. 48, 119–127 (2015).
(
10.1021/ar500306w
) / Accounts Chem. Res. by Q Li (2015) -
Voitchovsky, K., Kuna, J. J., Contera, S. A., Tosatti, E. & Stellacci, F. Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. Nat. Nanotechnol. 5, 401–405 (2010).
(
10.1038/nnano.2010.67
) / Nat. Nanotechnol. by K Voitchovsky (2010) -
Collins, L. et al. Probing charge screening dynamics and electrochemical processes at the solid-liquid interface with electrochemical force microscopy. Nat. Commun. 5, 3871 (2014).
(
10.1038/ncomms4871
) / Nat. Commun. by L Collins (2014) -
Li, T. D., Gao, J., Szoszkiewicz, R., Landman, U. & Riedo, E. Structured and viscous water in subnanometer gaps. Phys. Rev. B 75, 115415 (2007).
(
10.1103/PhysRevB.75.115415
) / Phys. Rev. B by TD Li (2007) -
Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014).
(
10.1038/nnano.2014.157
) / Nat. Nanotechnol. by R Garcia (2014) -
Spitzner, E. C., Röper, S., Zerson, M., Bernstein, A. & Magerle, R. Nanoscale swelling heterogeneities in type I collagen fibrils. ACS Nano 9, 5683–5694 (2015).
(
10.1021/nn503637q
) / ACS Nano by EC Spitzner (2015) -
Bizzarri, A. R. & Cannistraro, S. Molecular dynamics of water at the protein-solvent interface. J. Phys. Chem. B 106, 6617–6633 (2002).
(
10.1021/jp020100m
) / J. Phys. Chem. B by AR Bizzarri (2002) -
Levy, Y. & Onuchic, J. N. Water mediation in protein folding and molecular recognition. Ann. Rev. Biophy. Biomol. Struct. 35, 389–415 (2006).
(
10.1146/annurev.biophys.35.040405.102134
) / Ann. Rev. Biophy. Biomol. Struct. by Y Levy (2006) -
Israelachvili, J. & Wennerstrom, H. Role of hydration and water structure in biological and colloidal interactions. Nature 379, 219–225 (1996).
(
10.1038/379219a0
) / Nature by J Israelachvili (1996) -
Butt, H. J. & Kappl, M. Surface and Interfacial Forces 117–119Wiley-VCH Verlag GmbH & Co. KGaA (2010).
(
10.1002/9783527629411
) -
Davidchack, R. L. & Laird, B. B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy. Phys. Rev. Lett. 94, 4 (2005).
(
10.1103/PhysRevLett.94.086102
) / Phys. Rev. Lett. by RL Davidchack (2005) -
Bauer, C., Dietrich, S. & Parry, A. O. Morphological phase transitions of thin fluid films on chemically structured substrates. Europhys. Lett. 47, (4): 474–480 (1999).
(
10.1209/epl/i1999-00412-2
) / Europhys. Lett. by C Bauer (1999) -
Lowen, H. Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys. Cond. Matter 46, 11897–11905 (2002).
(
10.1088/0953-8984/14/46/301
) / J. Phys. Cond. Matter by H Lowen (2002) -
Israelachvili, J. N. & Pashley, R. M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306, 249–250 (1983).
(
10.1038/306249a0
) / Nature by JN Israelachvili (1983) -
Tarazona, P. & Vicente, L. A model for density oscillations in liquids between solid walls. Mol. Phys. 56, 557–572 (1985).
(
10.1080/00268978500102521
) / Mol. Phys. by P Tarazona (1985) -
O’Shea, S. J. & Welland, M. E. Atomic force microscopy at solid-liquid interfaces. Langmuir 14, 4186–4197 (1998).
(
10.1021/la9801864
) / Langmuir by SJ O’Shea (1998) -
Fenter, P. & Lee, S. S. Hydration layer structure at solid-water interfaces. MRS Bull. 39, 1056–1061 (2014).
(
10.1557/mrs.2014.252
) / MRS Bull. by P Fenter (2014) -
Velasco-Velez, J. J. et al. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).
(
10.1126/science.1259437
) / Science by JJ Velasco-Velez (2014) -
Ulcinas, A. et al. Shear Response of Nanoconfined Water on Muscovite Mica: Role of Cations. Langmuir 27, 10351–10355 (2011).
(
10.1021/la2021897
) / Langmuir by A Ulcinas (2011) -
Labuda, A., Kobayashi, K., Suzuki, K., Yamada, H. & Grütter, P. Monotonic damping in nanoscopic hydration experiments. Phys. Rev. Lett. 110, 066102 (2013).
(
10.1103/PhysRevLett.110.066102
) / Phys. Rev. Lett. by A Labuda (2013) -
Feibelman, P. J. The first wetting layer on a solid. Phys. Today 63, 34–39 (2010).
(
10.1063/1.3326987
) / Phys. Today by PJ Feibelman (2010) -
Reischl, B., Watkins, M. & Foster, A. S. Free energy approaches for modeling atomic force microscopy in liquids. J. Chem. Theory Comp. 9, 600–608 (2013).
(
10.1021/ct3008342
) / J. Chem. Theory Comp. by B Reischl (2013) -
Leng, Y. Hydration force between mica surfaces in aqueous KCl electrolyte solution. Langmuir 28, 5339–5349 (2012).
(
10.1021/la204603y
) / Langmuir by Y Leng (2012) -
Toth, G. I., Tegze, G., Pusztai, T. & Granasy, L. Heterogeneous crystal nucleation: the effect of Lattice Mismatch. Phys. Rev. Lett. 108, 025502 (2012).
(
10.1103/PhysRevLett.108.025502
) / Phys. Rev. Lett. by GI Toth (2012) -
Fukuma, T., Ueda, Y., Yoshioka, S. & Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010).
(
10.1103/PhysRevLett.104.016101
) / Phys. Rev. Lett. by T Fukuma (2010) -
Kimura, K. et al. Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 132, 194705 (2010).
(
10.1063/1.3408289
) / J. Chem. Phys. by K Kimura (2010) -
Arai, T. et al. Atom-resolved analysis of an ionic KBr(001) crystal surface covered with a thin water layer by frequency modulation atomic force microscopy. Langmuir 31, 3876–3883 (2015).
(
10.1021/acs.langmuir.5b00087
) / Langmuir by T Arai (2015) -
Marutschke, C. et al. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy. Nanotechnology 25, 335703 (2014).
(
10.1088/0957-4484/25/33/335703
) / Nanotechnology by C Marutschke (2014) -
Atsakawa, H., Yoshioka, S. & Fukuma, T. Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6, 9013–9020 (2012).
(
10.1021/nn303229j
) / ACS Nano by H Atsakawa (2012) -
Herruzo, E. T., Asakawa, H., Fukuma, T. & Garcia, R. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5, 2678–2685 (2013).
(
10.1039/C2NR33051B
) / Nanoscale by ET Herruzo (2013) -
Siretanu, I. et al. Direct observation of ionic structure at solid-liquid interfaces: a deep look into the Stern Layer. Sci. Rep. 4, 4956 (2014).
(
10.1038/srep04956
) / Sci. Rep. by I Siretanu (2014) -
Ricci, M., Spijker, P. & Voitchovsky, K. Water-induced correlation between single ions imaged at the solid-liquid interface. Nat. Commun. 5, 4400 (2014).
(
10.1038/ncomms5400
) / Nat. Commun. by M Ricci (2014) -
Loh, S. H. & Jarvis, S. P. Visualization of ion distribution at the mica-electrolyte interface. Langmuir 26, 9176–9178 (2010).
(
10.1021/la1011378
) / Langmuir by SH Loh (2010) -
Araki, Y. et al. Direct observation of the influence of additives on calcite hydration by frequency modulation atomic force microscopy. Cryst. Growth Des. 14, 6254–6260 (2014).
(
10.1021/cg500891j
) / Cryst. Growth Des. by Y Araki (2014) -
Garcia, R. & San Paulo, A. Attractive and repulsive tip-sample interaction regimes in tapping mode AFM. Phys. Rev. B 60, 4961–4967 (1999).
(
10.1103/PhysRevB.60.4961
) / Phys. Rev. B by R Garcia (1999) - Holscher, H. Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy. Appl. Phys. Lett. 89, 3 (2006). / Appl. Phys. Lett. by H Holscher (2006)
-
Payam, A. F., Martin-Jimenez, D. & Garcia, R. Force reconstruction from tapping mode force microscopy experiments. Nanotechnology 26, 185706 (2015).
(
10.1088/0957-4484/26/18/185706
) / Nanotechnology by AF Payam (2015) -
Fukuma, T. et al. Mechanism of atomic force microscopy imaging of three-dimensional hydration structures at a solid-liquid interface. Phys. Rev. B 92, 7 (2015).
(
10.1103/PhysRevB.92.155412
) / Phys. Rev. B by T Fukuma (2015) -
Wu, J. H., Ang, S. G. & Xu, G. Q. Atomic force microscopy study of self-assembled sodium chloride nanocrystallites and their morphology transitions. J. Phys. Chem. C 112, 7605–7610 (2008).
(
10.1021/jp800358s
) / J. Phys. Chem. C by JH Wu (2008) -
Rischl, B., Watkins, M. & Foster, A. S. Free energy approaches for modeling atomic force microscopy in liquids. J. Chem. Theory Comput. 9, 600–608 (2013).
(
10.1021/ct3008342
) / J. Chem. Theory Comput. by B Rischl (2013) -
Barth, C., Foster, A. S., Henry, C. R. & Shluger, A. L. Recent Trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23, 477–501 (2011).
(
10.1002/adma.201002270
) / Adv. Mater. by C Barth (2011) -
Bippes, C. A. & Muller, D. J. High-resolution atomic force microscopy and spectroscopy of native membranes. Rev. Prog. Phys. 74, 086601 (2011).
(
10.1088/0034-4885/74/8/086601
) / Rev. Prog. Phys. by CA Bippes (2011) -
Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143 (1979).
(
10.1080/00018737900101365
) / Adv. Phys. by R Evans (1979) - Ashcroft, N. W. & Nermin, N. D. Solid State Physics Holt, Rinehart and Winston (1976).
-
Tarazona, P. Density functional for hard spheres crystals: a fundamental measure approach. Phys. Rev. Lett. 84, 694 (2000).
(
10.1103/PhysRevLett.84.694
) / Phys. Rev. Lett. by P Tarazona (2000) -
Tarazona, P., Cuesta, J. A. & Martinez-Ratón, Y. in Lecture Notes in Physics ed. Mulero A. 753, 247–341Springer (2008).
(
10.1007/978-3-540-78767-9_7
) / Lecture Notes in Physics by P Tarazona (2008)
Dates
Type | When |
---|---|
Created | 9 years, 1 month ago (July 15, 2016, 5:58 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:08 a.m.) |
Indexed | 22 hours, 50 minutes ago (Aug. 27, 2025, 12:09 p.m.) |
Issued | 9 years, 1 month ago (July 15, 2016) |
Published | 9 years, 1 month ago (July 15, 2016) |
Published Online | 9 years, 1 month ago (July 15, 2016) |
@article{Martin_Jimenez_2016, title={Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms12164}, DOI={10.1038/ncomms12164}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Martin-Jimenez, Daniel and Chacon, Enrique and Tarazona, Pedro and Garcia, Ricardo}, year={2016}, month=jul }