Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractSuppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery.

Bibliography

Basile, A., Bhatt, A. I., & O’Mullane, A. P. (2016). Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature Communications, 7(1).

Authors 3
  1. A. Basile (first)
  2. A. I. Bhatt (additional)
  3. A. P. O’Mullane (additional)
References 50 Referenced 394
  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by JM Tarascon (2001)
  2. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  3. Ryou, M.-H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015). (10.1002/adfm.201402953) / Adv. Funct. Mater. by M-H Ryou (2015)
  4. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010). (10.1038/nmat2764) / Nat. Mater. by R Bhattacharyya (2010)
  5. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011). (10.1038/nmat3191) / Nat. Mater. by PG Bruce (2011)
  6. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). (10.1038/nmat3793) / Nat. Mater. by KJ Harry (2014)
  7. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002). (10.1016/S0167-2738(02)00080-2) / Solid State Ionics by D Aurbach (2002)
  8. Aryanfar, A. et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and monte carlo calculations. J. Phys. Chem. Lett. 5, 1721–1726 (2014). (10.1021/jz500207a) / J. Phys. Chem. Lett. by A Aryanfar (2014)
  9. Bieker, G., Bieker, P. M. & Winter, M. Electrochemical in situ investigations of the SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015). (10.1039/C4CP05865H) / Phys. Chem. Chem. Phys. by G Bieker (2015)
  10. Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009). (10.1038/nmat2448) / Nat. Mater. by M Armand (2009)
  11. Bhatt, A. I., Best, A. S., Huang, J. & Hollenkamp, A. F. Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL containing lithium Bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J. Electrochem. Soc. 157, A66 (2010). (10.1149/1.3257978) / J. Electrochem. Soc. by AI Bhatt (2010)
  12. Best, A. S., Bhatt, A. I. & Hollenkamp, A. F. Ionic liquids with the Bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J. Electrochem. Soc. 157, A903–A911 (2010). (10.1149/1.3429886) / J. Electrochem. Soc. by AS Best (2010)
  13. Shkrob, I. a, Marin, T. W., Zhu, Y. & Abraham, D. P. Why Bis(fluorosulfonyl)imide is a ‘magic anion’ for electrochemistry. J. Phys. Chem. C 118, 19661–19671 (2014). (10.1021/jp506567p) / J. Phys. Chem. C by Ia Shkrob (2014)
  14. Basile, A., Bhatt, A. I. & O’Mullane, A. P. A combined scanning electron micrograph and electrochemical study of the effect of chemical interaction on the cyclability of lithium electrodes in an ionic liquid electrolyte. Aust. J. Chem. 65, 1534–1541 (2012). (10.1071/CH12334) / Aust. J. Chem. by A Basile (2012)
  15. Haskins, J. B. et al. Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4]. J. Phys. Chem. B 118, 11295–11309 (2014). (10.1021/jp5061705) / J. Phys. Chem. B by JB Haskins (2014)
  16. Han, H. B. et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J. Power Sources 196, 3623–3632 (2011). (10.1016/j.jpowsour.2010.12.040) / J. Power Sources by HB Han (2011)
  17. Kühnel, R.-S., Lübke, M., Winter, M., Passerini, S. & Balducci, A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J. Power Sources 214, 178–184 (2012). (10.1016/j.jpowsour.2012.04.054) / J. Power Sources by R-S Kühnel (2012)
  18. Cho, E. et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem. Commun. 22, 1–3 (2012). (10.1016/j.elecom.2012.05.018) / Electrochem. Commun. by E Cho (2012)
  19. Budi, A. et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-Bis (Fluorosulfonyl) imide. J. Phys. Chem. C 116, 19789–19797 (2012). (10.1021/jp304581g) / J. Phys. Chem. C by A Budi (2012)
  20. Grande, L. et al. Homogeneous lithium electrodeposition with Pyrrolidinium-based ionic liquid electrolytes. ACS Appl. Mater. Interfaces 7, 5950–5958 (2015). (10.1021/acsami.5b00209) / ACS Appl. Mater. Interfaces by L Grande (2015)
  21. Basile, A., Hollenkamp, A. F., Bhatt, A. I. & O’Mullane, A. P. Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem. Commun. 27, 69–72 (2013). (10.1016/j.elecom.2012.10.030) / Electrochem. Commun. by A Basile (2013)
  22. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). (10.1038/nnano.2014.152) / Nat. Nanotechnol. by G Zheng (2014)
  23. Zhang, D., Yin, Y., Liu, C. & Fan, S. Modified secondary lithium metal batteries with the polyaniline–carbon nanotube composite buffer layer. Chem. Commun. 51, 322–325 (2015). (10.1039/C4CC08083A) / Chem. Commun. by D Zhang (2015)
  24. Cheng, X.-B. & Zhang, Q. Dendrite-free lithium metal anodes: Stable solid electrolyte interphase for high-efficiency batteries. J. Mater. Chem. A 3, 7207–7209 (2015). (10.1039/C5TA00689A) / J. Mater. Chem. A by X-B Cheng (2015)
  25. Muenzel, V. et al. A comparative testing study of commercial 18650-format lithium-ion battery cells. J. Electrochem. Soc. 162, A1592–A1600 (2015). (10.1149/2.0721508jes) / J. Electrochem. Soc. by V Muenzel (2015)
  26. Markevich, E. et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55, 2687–2696 (2010). (10.1016/j.electacta.2009.12.030) / Electrochim. Acta by E Markevich (2010)
  27. Lane, G. H. Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts. Electrochim. Acta 83, 513–528 (2012). (10.1016/j.electacta.2012.08.046) / Electrochim. Acta by GH Lane (2012)
  28. Kroon, M. C., Buijs, W., Peters, C. J. & Witkamp, G.-J. Decomposition of ionic liquids in electrochemical processing. Green Chem. 8, 241 (2006). (10.1039/B512724F) / Green Chem. by MC Kroon (2006)
  29. Philippe, B. et al. Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. J. Am. Chem. Soc. 135, 9829–9842 (2013). (10.1021/ja403082s) / J. Am. Chem. Soc. by B Philippe (2013)
  30. Kanamura, K., Tamura, H., Shiraishi, S. S. & Takehara, Z.-I. XPS analysis for the lithium surface immersed in [gamma]-butyrolactone containing various salts. Electrochim. Acta 40, 913–921 (1995). (10.1016/0013-4686(93)E0020-M) / Electrochim. Acta by K Kanamura (1995)
  31. Bhatt, A. I., Kao, P., Best, A. S. & Hollenkamp, A. F. Understanding the morphological changes of lithium surfaces during cycling in electrolyte solutions of lithium salts in an ionic liquid. J. Electrochem. Soc. 160, A1171–A1180 (2013). (10.1149/2.056308jes) / J. Electrochem. Soc. by AI Bhatt (2013)
  32. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014). (10.1021/nl503125u) / Nano Lett. by K Yan (2014)
  33. Howlett, P. C., Brack, N., Hollenkamp, A. F., Forsyth, M. & MacFarlane, D. R. Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl) amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 153, A595–A606 (2006). (10.1149/1.2164726) / J. Electrochem. Soc. by PC Howlett (2006)
  34. Koch, V. R. Reactions of tetrahydrofuran and lithium hexafluoroarsenate with lithium. J. Electrochem. Soc. 126, 181–187 (1979). (10.1149/1.2129002) / J. Electrochem. Soc. by VR Koch (1979)
  35. Aurbach, D., Weissman, I., Schechter, A. & Cohen, H. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12, 3991–4007 (1996). (10.1021/la9600762) / Langmuir by D Aurbach (1996)
  36. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). (10.1038/nmat4041) / Nat. Mater. by Y Lu (2014)
  37. Andre, D. et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 196, 5334–5341 (2011). (10.1016/j.jpowsour.2010.12.102) / J. Power Sources by D Andre (2011)
  38. Andre, D. et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 196, 5349–5356 (2011). (10.1016/j.jpowsour.2010.07.071) / J. Power Sources by D Andre (2011)
  39. Lane et al. Ionic liquid electrolyte for lithium metal batteries. Physical, electrochemical and interfacial studies of N-methyl-N-butyl morpholinium bis (fluorosulfonyl) imide. J.Phys. Chem. C 144, 21775–21785 (2010). (10.1021/jp1054809)
  40. Lee, H., Lee, D. J., Kim, Y.-J., Park, J. & Kim, H. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015). (10.1016/j.jpowsour.2015.03.004) / J. Power Sources by H Lee (2015)
  41. Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010). (10.1038/nchem.763) / Nat. Chem. by J-Y Luo (2010)
  42. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). (10.1038/ncomms9058) / Nat. Commun. by C-P Yang (2015)
  43. Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015). (10.1002/adma.201502059) / Adv. Mater. by Q Pan (2015)
  44. Zhao, C.-Z. et al. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 3, 77–84 (2016). (10.1016/j.ensm.2016.01.007) / Energy Storage Mater. by C-Z Zhao (2016)
  45. Zhang, R. et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016). (10.1002/adma.201504117) / Adv. Mater. by R Zhang (2016)
  46. Ma, Q. et al. Improved cycling stability of lithium metal anode with novel concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem. 6, 32454–32461 (2016). / ChemElectroChem. by Q Ma (2016)
  47. Gu, W. et al. Lithium-iron fluoride battery with in situ surface protection. Adv. Funct. Mater. 26, 1507–1516 (2016). (10.1002/adfm.201504848) / Adv. Funct. Mater. by W Gu (2016)
  48. Togasaki, N., Momma, T. & Osaka, T. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery. J. Power Sources 307, 98–104 (2016). (10.1016/j.jpowsour.2015.12.123) / J. Power Sources by N Togasaki (2016)
  49. Zhou, D. et al. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Ad. Energy Mater. 6, 1502214 (2016). (10.1002/aenm.201502214) / Ad. Energy Mater. by D Zhou (2016)
  50. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). (10.1038/ncomms7362) / Nat. Commun. by J Qian (2015)
Dates
Type When
Created 9 years, 2 months ago (June 13, 2016, 6:03 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:24 a.m.)
Indexed 1 day, 5 hours ago (Aug. 23, 2025, 1:13 a.m.)
Issued 9 years, 2 months ago (June 13, 2016)
Published 9 years, 2 months ago (June 13, 2016)
Published Online 9 years, 2 months ago (June 13, 2016)
Funders 0

None

@article{Basile_2016, title={Stabilizing lithium metal using ionic liquids for long-lived batteries}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11794}, DOI={10.1038/ncomms11794}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Basile, A. and Bhatt, A. I. and O’Mullane, A. P.}, year={2016}, month=jun }