Abstract
AbstractSuppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery.
References
50
Referenced
394
-
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by JM Tarascon (2001) -
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Ryou, M.-H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015).
(
10.1002/adfm.201402953
) / Adv. Funct. Mater. by M-H Ryou (2015) -
Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).
(
10.1038/nmat2764
) / Nat. Mater. by R Bhattacharyya (2010) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011).
(
10.1038/nmat3191
) / Nat. Mater. by PG Bruce (2011) -
Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).
(
10.1038/nmat3793
) / Nat. Mater. by KJ Harry (2014) -
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).
(
10.1016/S0167-2738(02)00080-2
) / Solid State Ionics by D Aurbach (2002) -
Aryanfar, A. et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and monte carlo calculations. J. Phys. Chem. Lett. 5, 1721–1726 (2014).
(
10.1021/jz500207a
) / J. Phys. Chem. Lett. by A Aryanfar (2014) -
Bieker, G., Bieker, P. M. & Winter, M. Electrochemical in situ investigations of the SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).
(
10.1039/C4CP05865H
) / Phys. Chem. Chem. Phys. by G Bieker (2015) -
Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).
(
10.1038/nmat2448
) / Nat. Mater. by M Armand (2009) -
Bhatt, A. I., Best, A. S., Huang, J. & Hollenkamp, A. F. Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL containing lithium Bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J. Electrochem. Soc. 157, A66 (2010).
(
10.1149/1.3257978
) / J. Electrochem. Soc. by AI Bhatt (2010) -
Best, A. S., Bhatt, A. I. & Hollenkamp, A. F. Ionic liquids with the Bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J. Electrochem. Soc. 157, A903–A911 (2010).
(
10.1149/1.3429886
) / J. Electrochem. Soc. by AS Best (2010) -
Shkrob, I. a, Marin, T. W., Zhu, Y. & Abraham, D. P. Why Bis(fluorosulfonyl)imide is a ‘magic anion’ for electrochemistry. J. Phys. Chem. C 118, 19661–19671 (2014).
(
10.1021/jp506567p
) / J. Phys. Chem. C by Ia Shkrob (2014) -
Basile, A., Bhatt, A. I. & O’Mullane, A. P. A combined scanning electron micrograph and electrochemical study of the effect of chemical interaction on the cyclability of lithium electrodes in an ionic liquid electrolyte. Aust. J. Chem. 65, 1534–1541 (2012).
(
10.1071/CH12334
) / Aust. J. Chem. by A Basile (2012) -
Haskins, J. B. et al. Computational and experimental investigation of Li-doped ionic liquid electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4]. J. Phys. Chem. B 118, 11295–11309 (2014).
(
10.1021/jp5061705
) / J. Phys. Chem. B by JB Haskins (2014) -
Han, H. B. et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: physicochemical and electrochemical properties. J. Power Sources 196, 3623–3632 (2011).
(
10.1016/j.jpowsour.2010.12.040
) / J. Power Sources by HB Han (2011) -
Kühnel, R.-S., Lübke, M., Winter, M., Passerini, S. & Balducci, A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J. Power Sources 214, 178–184 (2012).
(
10.1016/j.jpowsour.2012.04.054
) / J. Power Sources by R-S Kühnel (2012) -
Cho, E. et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem. Commun. 22, 1–3 (2012).
(
10.1016/j.elecom.2012.05.018
) / Electrochem. Commun. by E Cho (2012) -
Budi, A. et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-Bis (Fluorosulfonyl) imide. J. Phys. Chem. C 116, 19789–19797 (2012).
(
10.1021/jp304581g
) / J. Phys. Chem. C by A Budi (2012) -
Grande, L. et al. Homogeneous lithium electrodeposition with Pyrrolidinium-based ionic liquid electrolytes. ACS Appl. Mater. Interfaces 7, 5950–5958 (2015).
(
10.1021/acsami.5b00209
) / ACS Appl. Mater. Interfaces by L Grande (2015) -
Basile, A., Hollenkamp, A. F., Bhatt, A. I. & O’Mullane, A. P. Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem. Commun. 27, 69–72 (2013).
(
10.1016/j.elecom.2012.10.030
) / Electrochem. Commun. by A Basile (2013) -
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotechnol. by G Zheng (2014) -
Zhang, D., Yin, Y., Liu, C. & Fan, S. Modified secondary lithium metal batteries with the polyaniline–carbon nanotube composite buffer layer. Chem. Commun. 51, 322–325 (2015).
(
10.1039/C4CC08083A
) / Chem. Commun. by D Zhang (2015) -
Cheng, X.-B. & Zhang, Q. Dendrite-free lithium metal anodes: Stable solid electrolyte interphase for high-efficiency batteries. J. Mater. Chem. A 3, 7207–7209 (2015).
(
10.1039/C5TA00689A
) / J. Mater. Chem. A by X-B Cheng (2015) -
Muenzel, V. et al. A comparative testing study of commercial 18650-format lithium-ion battery cells. J. Electrochem. Soc. 162, A1592–A1600 (2015).
(
10.1149/2.0721508jes
) / J. Electrochem. Soc. by V Muenzel (2015) -
Markevich, E. et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55, 2687–2696 (2010).
(
10.1016/j.electacta.2009.12.030
) / Electrochim. Acta by E Markevich (2010) -
Lane, G. H. Electrochemical reduction mechanisms and stabilities of some cation types used in ionic liquids and other organic salts. Electrochim. Acta 83, 513–528 (2012).
(
10.1016/j.electacta.2012.08.046
) / Electrochim. Acta by GH Lane (2012) -
Kroon, M. C., Buijs, W., Peters, C. J. & Witkamp, G.-J. Decomposition of ionic liquids in electrochemical processing. Green Chem. 8, 241 (2006).
(
10.1039/B512724F
) / Green Chem. by MC Kroon (2006) -
Philippe, B. et al. Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. J. Am. Chem. Soc. 135, 9829–9842 (2013).
(
10.1021/ja403082s
) / J. Am. Chem. Soc. by B Philippe (2013) -
Kanamura, K., Tamura, H., Shiraishi, S. S. & Takehara, Z.-I. XPS analysis for the lithium surface immersed in [gamma]-butyrolactone containing various salts. Electrochim. Acta 40, 913–921 (1995).
(
10.1016/0013-4686(93)E0020-M
) / Electrochim. Acta by K Kanamura (1995) -
Bhatt, A. I., Kao, P., Best, A. S. & Hollenkamp, A. F. Understanding the morphological changes of lithium surfaces during cycling in electrolyte solutions of lithium salts in an ionic liquid. J. Electrochem. Soc. 160, A1171–A1180 (2013).
(
10.1149/2.056308jes
) / J. Electrochem. Soc. by AI Bhatt (2013) -
Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).
(
10.1021/nl503125u
) / Nano Lett. by K Yan (2014) -
Howlett, P. C., Brack, N., Hollenkamp, A. F., Forsyth, M. & MacFarlane, D. R. Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl) amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 153, A595–A606 (2006).
(
10.1149/1.2164726
) / J. Electrochem. Soc. by PC Howlett (2006) -
Koch, V. R. Reactions of tetrahydrofuran and lithium hexafluoroarsenate with lithium. J. Electrochem. Soc. 126, 181–187 (1979).
(
10.1149/1.2129002
) / J. Electrochem. Soc. by VR Koch (1979) -
Aurbach, D., Weissman, I., Schechter, A. & Cohen, H. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12, 3991–4007 (1996).
(
10.1021/la9600762
) / Langmuir by D Aurbach (1996) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Andre, D. et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 196, 5334–5341 (2011).
(
10.1016/j.jpowsour.2010.12.102
) / J. Power Sources by D Andre (2011) -
Andre, D. et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 196, 5349–5356 (2011).
(
10.1016/j.jpowsour.2010.07.071
) / J. Power Sources by D Andre (2011) -
Lane et al. Ionic liquid electrolyte for lithium metal batteries. Physical, electrochemical and interfacial studies of N-methyl-N-butyl morpholinium bis (fluorosulfonyl) imide. J.Phys. Chem. C 144, 21775–21785 (2010).
(
10.1021/jp1054809
) -
Lee, H., Lee, D. J., Kim, Y.-J., Park, J. & Kim, H. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015).
(
10.1016/j.jpowsour.2015.03.004
) / J. Power Sources by H Lee (2015) -
Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).
(
10.1038/nchem.763
) / Nat. Chem. by J-Y Luo (2010) -
Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).
(
10.1038/ncomms9058
) / Nat. Commun. by C-P Yang (2015) -
Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015).
(
10.1002/adma.201502059
) / Adv. Mater. by Q Pan (2015) -
Zhao, C.-Z. et al. Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 3, 77–84 (2016).
(
10.1016/j.ensm.2016.01.007
) / Energy Storage Mater. by C-Z Zhao (2016) -
Zhang, R. et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016).
(
10.1002/adma.201504117
) / Adv. Mater. by R Zhang (2016) - Ma, Q. et al. Improved cycling stability of lithium metal anode with novel concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem. 6, 32454–32461 (2016). / ChemElectroChem. by Q Ma (2016)
-
Gu, W. et al. Lithium-iron fluoride battery with in situ surface protection. Adv. Funct. Mater. 26, 1507–1516 (2016).
(
10.1002/adfm.201504848
) / Adv. Funct. Mater. by W Gu (2016) -
Togasaki, N., Momma, T. & Osaka, T. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium−oxygen battery. J. Power Sources 307, 98–104 (2016).
(
10.1016/j.jpowsour.2015.12.123
) / J. Power Sources by N Togasaki (2016) -
Zhou, D. et al. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Ad. Energy Mater. 6, 1502214 (2016).
(
10.1002/aenm.201502214
) / Ad. Energy Mater. by D Zhou (2016) -
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015)
Dates
Type | When |
---|---|
Created | 9 years, 2 months ago (June 13, 2016, 6:03 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:24 a.m.) |
Indexed | 1 day, 5 hours ago (Aug. 23, 2025, 1:13 a.m.) |
Issued | 9 years, 2 months ago (June 13, 2016) |
Published | 9 years, 2 months ago (June 13, 2016) |
Published Online | 9 years, 2 months ago (June 13, 2016) |
@article{Basile_2016, title={Stabilizing lithium metal using ionic liquids for long-lived batteries}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11794}, DOI={10.1038/ncomms11794}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Basile, A. and Bhatt, A. I. and O’Mullane, A. P.}, year={2016}, month=jun }