Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractHigh-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium–sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium–sulfur battery that uses a microporous carbon–sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g−1) with 600 mAh g−1 reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

Bibliography

Wei, S., Xu, S., Agrawral, A., Choudhury, S., Lu, Y., Tu, Z., Ma, L., & Archer, L. A. (2016). A stable room-temperature sodium–sulfur battery. Nature Communications, 7(1).

Authors 8
  1. Shuya Wei (first)
  2. Shaomao Xu (additional)
  3. Akanksha Agrawral (additional)
  4. Snehashis Choudhury (additional)
  5. Yingying Lu (additional)
  6. Zhengyuan Tu (additional)
  7. Lin Ma (additional)
  8. Lynden A. Archer (additional)
References 67 Referenced 528
  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  2. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). (10.1126/science.1212741) / Science by B Dunn (2011)
  3. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by JM Tarascon (2001)
  4. Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 192, 1126–1127 (1976). (10.1126/science.192.4244.1126) / Science by MS Whittingham (1976)
  5. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). (10.1038/nmat3191) / Nat. Mater. by PG Bruce (2012)
  6. Ma, L., Hendrickson, K. E., Wei, S. & Archer, L. A. Nanomaterials: science and applications in the lithium-sulfur battery. Nano Today 10, 315–338 (2015). (10.1016/j.nantod.2015.04.011) / Nano Today by L Ma (2015)
  7. Manthiram, A., Chung, S.-H. & Zu, C. Lithium-Sulfur Batteries: Progress and Prospects. Adv. Mater. 27, 1980–2006 (2015). (10.1002/adma.201405115) / Adv. Mater. by A Manthiram (2015)
  8. Wang, Z. et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 50052 (2014). / Nat. Commun. by Z Wang (2014)
  9. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). (10.1038/nmat2460) / Nat. Mater. by X Ji (2009)
  10. Zhao, Q. et al. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 15, 721–726 (2015). (10.1021/nl504263m) / Nano Lett. by Q Zhao (2015)
  11. Guo, J., Yang, Z., Yu, Y., Abruña, H. D. & Archer, L. A. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J. Am. Chem. Soc. 135, 763–767 (2013). (10.1021/ja309435f) / J. Am. Chem. Soc. by J Guo (2013)
  12. Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012). (10.1038/nmat3309) / Nat. Mater. by N Yabuuchi (2012)
  13. Lu, Y., Wang, L., Cheng, J. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012). (10.1039/c2cc31777j) / Chem. Commun. by Y Lu (2012)
  14. Manthiram, A. & Yu, X. Ambient temperature sodium-sulfur batteries. Small 11, 2108–2114 (2015). (10.1002/smll.201403257) / Small by A Manthiram (2015)
  15. Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015). (10.3762/bjnano.6.105) / Beilstein J. Nanotechnol. by P Adelhelm (2015)
  16. Sudworth, J. L. & Tilley, A. R. The Sodium Sulfur Battery Chapter 2, Chapman & Hall (1985).
  17. Hueso, K. B., Armand, M. & Rojo, T. High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734–749 (2013). (10.1039/c3ee24086j) / Energy Environ. Sci. by KB Hueso (2013)
  18. Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015). (10.1021/acscentsci.5b00328) / ACS Cent. Sci. by ZW Seh (2015)
  19. Xin, S., Yin, Y.-X., Guo, Y.-G. & Wan, L.-J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014). (10.1002/adma.201304126) / Adv. Mater. by S Xin (2014)
  20. Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011). (10.1021/am200973k) / ACS Appl. Mater. Interfaces by S Komaba (2011)
  21. Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013). (10.1002/anie.201304762) / Angew. Chem. Int. Ed. by Y-X Yin (2013)
  22. Su, Y.-S., Fu, Y., Cochell, T. & Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 4, 2985 (2013). (10.1038/ncomms3985) / Nat. Commun. by Y-S Su (2013)
  23. Peng, H.-J. & Zhang, Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew. Chem. Int. Ed. 54, 11018–11020 (2015). (10.1002/anie.201505444) / Angew. Chem. Int. Ed. by H-J Peng (2015)
  24. Zhang, B., Qin, X., Li, G. R. & Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010). (10.1039/c002639e) / Energy Environ. Sci. by B Zhang (2010)
  25. Li, Z. et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4, 1301473–1301480 (2014). (10.1002/aenm.201301473) / Adv. Energy Mater. by Z Li (2014)
  26. Xin, S. et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012). (10.1021/ja308170k) / J. Am. Chem. Soc. by S Xin (2012)
  27. Wu, H. B. et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chemistry 19, 10804–10808 (2013). (10.1002/chem.201301689) / Chemistry by HB Wu (2013)
  28. Fu, C., Wong, B. M., Bozhilov, K. N. & Guo, J. Solid state lithiation-delithiation of sulphur in sub-nano confinement: a new concept for designing lithium-sulphur batteries. Chem. Sci. 7, 1224–1232 (2016). (10.1039/C5SC03419A) / Chem. Sci. by C Fu (2016)
  29. Schaefer, J. L., Moganty, S. S., Yanga, D. A. & Archer, L. A. Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094–10101 (2011). (10.1039/c0jm04171h) / J. Mater. Chem. by JL Schaefer (2011)
  30. Schaefer, J. et al. Electrolytes for high-energy lithium batteries. Appl. Nanosci. 2, 91–109 (2012). (10.1007/s13204-011-0044-x) / Appl. Nanosci. by J Schaefer (2012)
  31. Lu, Y., Das, S. K., Moganty, S. S. & Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012). (10.1002/adma.201201953) / Adv. Mater. by Y Lu (2012)
  32. Lu, Y., Moganty, S. S., Schaefer, J. L. & Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes. J. Mater. Chem. 22, 4066–4072 (2012). (10.1039/c2jm15345a) / J. Mater. Chem. by Y Lu (2012)
  33. Lu, Y., Korf, K., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014). (10.1002/anie.201307137) / Angew. Chem. Int. Ed. by Y Lu (2014)
  34. Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073–1402079 (2015). (10.1002/aenm.201402073) / Adv. Energy Mater. by Y Lu (2015)
  35. Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014). (10.1149/2.085405jes) / J. Electrochem. Soc. by MD Tikekar (2014)
  36. Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015). (10.1021/acs.accounts.5b00427) / Acc. Chem. Res. by Z Tu (2015)
  37. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). (10.1038/nmat4041) / Nat. Mater. by Y Lu (2014)
  38. McMillan, R. S., Worsfold, D. J., Murray, J. J., Davidson, I. & Shu, Z. X. Electrolyte comprising fluoro-ethylene carbonate and propylene carbonate, for alkali metal-ion secondary battery, US patent 6506524 B1 (2003).
  39. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nano 9, 618–623 (2014). (10.1038/nnano.2014.152) / Nat. Nano by G Zheng (2014)
  40. Hwang, T. H., Jung, D. S., Kim, J.-S., Kim, B. G. & Choi, J. W. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett. 13, 4532–4538 (2013). (10.1021/nl402513x) / Nano Lett. by TH Hwang (2013)
  41. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, 988–998 (2015). (10.1126/science.aaa8075) / Science by AG Slater (2015)
  42. Cravillon, J. et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23, 2130–2141 (2011). (10.1021/cm103571y) / Chem. Mater. by J Cravillon (2011)
  43. Wei, S., Ma, L., Hendrickson, K. E., Tu, Z. & Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015). (10.1021/jacs.5b08113) / J. Am. Chem. Soc. by S Wei (2015)
  44. Meyer, B. Elemental sulfur. Chem. Rev. 76, 367–388 (1976). (10.1021/cr60301a003) / Chem. Rev. by B Meyer (1976)
  45. Moon, S. et al. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater. 25, 6547–6553 (2013). (10.1002/adma.201303166) / Adv. Mater. by S Moon (2013)
  46. Erlich, R. H. & Popov, A. I. Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. J. Am. Chem. Soc. 93, 5620–5623 (1971). (10.1021/ja00751a005) / J. Am. Chem. Soc. by RH Erlich (1971)
  47. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). (10.1039/c1ee01782a) / Energy Environ. Sci. by SP Ong (2011)
  48. Kim, I. et al. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sources 301, 332–337 (2016). (10.1016/j.jpowsour.2015.09.120) / J. Power Sources by I Kim (2016)
  49. Yu, X. & Manthiram, A. Ambient-temperature sodium-sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5, 1500350–1500355 (2015). (10.1002/aenm.201500350) / Adv. Energy Mater. by X Yu (2015)
  50. Yu, X. & Manthiram, A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 1, 1275–1280 (2014). (10.1002/celc.201402112) / ChemElectroChem by X Yu (2014)
  51. Yu, X. & Manthiram, A. Room-temperature sodium-sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118, 22952–22959 (2014). (10.1021/jp507655u) / J. Phys. Chem. C by X Yu (2014)
  52. Yu, X. & Manthiram, A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries. J. Phys. Chem. Lett. 5, 1943–1947 (2014). (10.1021/jz500848x) / J. Phys. Chem. Lett. by X Yu (2014)
  53. Bauer, I., Kohl, M., Althues, H. & Kaskel, S. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. Chem. Commun. 50, 3208–3210 (2014). (10.1039/c4cc00161c) / Chem. Commun. by I Bauer (2014)
  54. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). (10.1038/ncomms8436) / Nat. Commun. by W Li (2015)
  55. Yim, T. et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries. Electrochim. Acta 107, 454–460 (2013). (10.1016/j.electacta.2013.06.039) / Electrochim. Acta by T Yim (2013)
  56. Xu, W.-T. et al. Towards stable lithium-sulfur batteries with a low self-discharge rate: ion diffusion modulation and anode protection. ChemSusChem 8, 2892–2901 (2015). (10.1002/cssc.201500428) / ChemSusChem by W-T Xu (2015)
  57. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). (10.1021/cr500062v) / Chem. Rev. by A Manthiram (2014)
  58. Cohn, G., Ma, L. & Archer, L. A. A novel non-aqueous aluminum sulfur battery. J. Power Sources 283, 416–422 (2015). (10.1016/j.jpowsour.2015.02.131) / J. Power Sources by G Cohn (2015)
  59. Mirkin, M. V., Bulhoes, L. O. S. & Bard, A. J. Determination of the kinetic parameters for the electroreduction of fullerene C60 by scanning electrochemical microscopy and fast scan cyclic voltammetry. J. Am. Chem. Soc. 115, 201–204 (1993). (10.1021/ja00054a028) / J. Am. Chem. Soc. by MV Mirkin (1993)
  60. Kundu, D., Talaie, E., Duffort, V. & Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015). (10.1002/anie.201410376) / Angew. Chem. Int. Ed. by D Kundu (2015)
  61. Wang, L. et al. A Superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013). (10.1002/anie.201206854) / Angew. Chem. Int. Ed. by L Wang (2013)
  62. Xu, S., Lu, Y., Wang, H., Abruna, H. D. & Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2, 17723–17729 (2014). (10.1039/C4TA04130E) / J. Mater. Chem. A by S Xu (2014)
  63. Liang, X. et al. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015). (10.1038/ncomms6682) / Nat. Commun. by X Liang (2015)
  64. Kawase, A., Shirai, S., Yamoto, Y., Arakawa, R. & Takata, T. Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 16, 9344–9350 (2014). (10.1039/C4CP00958D) / Phys. Chem. Chem. Phys. by A Kawase (2014)
  65. Manan, N. S. A. et al. Electrochemistry of Sulfur and Polysulfides in Ionic Liquids. The Journal of Physical Chemistry B 115, 13873–13879 (2011). (10.1021/jp208159v) / The Journal of Physical Chemistry B by NSA Manan (2011)
  66. Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed‐conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977). (10.1149/1.2133112) / J. Electrochem. Soc. by W Weppner (1977)
  67. Kamlet, M. J., Carr, P. W., Taft, R. W. & Abraham, M. H. Linear solvation energy relationships. 13. Relationship between the Hildebrand solubility parameter, .delta.H, and the solvatochromic parameter, .pi.*. J. Am. Chem. Soc. 103, 6062–6066 (1981). (10.1021/ja00410a013) / J. Am. Chem. Soc. by MJ Kamlet (1981)
Dates
Type When
Created 9 years, 2 months ago (June 9, 2016, 9:52 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:29 a.m.)
Indexed 1 day, 15 hours ago (Aug. 23, 2025, 1:13 a.m.)
Issued 9 years, 2 months ago (June 9, 2016)
Published 9 years, 2 months ago (June 9, 2016)
Published Online 9 years, 2 months ago (June 9, 2016)
Funders 0

None

@article{Wei_2016, title={A stable room-temperature sodium–sulfur battery}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11722}, DOI={10.1038/ncomms11722}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wei, Shuya and Xu, Shaomao and Agrawral, Akanksha and Choudhury, Snehashis and Lu, Yingying and Tu, Zhengyuan and Ma, Lin and Archer, Lynden A.}, year={2016}, month=jun }