Abstract
AbstractHigh-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium–sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium–sulfur battery that uses a microporous carbon–sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g−1) with 600 mAh g−1 reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.
References
67
Referenced
528
-
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
(
10.1126/science.1212741
) / Science by B Dunn (2011) -
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by JM Tarascon (2001) -
Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 192, 1126–1127 (1976).
(
10.1126/science.192.4244.1126
) / Science by MS Whittingham (1976) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).
(
10.1038/nmat3191
) / Nat. Mater. by PG Bruce (2012) -
Ma, L., Hendrickson, K. E., Wei, S. & Archer, L. A. Nanomaterials: science and applications in the lithium-sulfur battery. Nano Today 10, 315–338 (2015).
(
10.1016/j.nantod.2015.04.011
) / Nano Today by L Ma (2015) -
Manthiram, A., Chung, S.-H. & Zu, C. Lithium-Sulfur Batteries: Progress and Prospects. Adv. Mater. 27, 1980–2006 (2015).
(
10.1002/adma.201405115
) / Adv. Mater. by A Manthiram (2015) - Wang, Z. et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 50052 (2014). / Nat. Commun. by Z Wang (2014)
-
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).
(
10.1038/nmat2460
) / Nat. Mater. by X Ji (2009) -
Zhao, Q. et al. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 15, 721–726 (2015).
(
10.1021/nl504263m
) / Nano Lett. by Q Zhao (2015) -
Guo, J., Yang, Z., Yu, Y., Abruña, H. D. & Archer, L. A. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J. Am. Chem. Soc. 135, 763–767 (2013).
(
10.1021/ja309435f
) / J. Am. Chem. Soc. by J Guo (2013) -
Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).
(
10.1038/nmat3309
) / Nat. Mater. by N Yabuuchi (2012) -
Lu, Y., Wang, L., Cheng, J. & Goodenough, J. B. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012).
(
10.1039/c2cc31777j
) / Chem. Commun. by Y Lu (2012) -
Manthiram, A. & Yu, X. Ambient temperature sodium-sulfur batteries. Small 11, 2108–2114 (2015).
(
10.1002/smll.201403257
) / Small by A Manthiram (2015) -
Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).
(
10.3762/bjnano.6.105
) / Beilstein J. Nanotechnol. by P Adelhelm (2015) - Sudworth, J. L. & Tilley, A. R. The Sodium Sulfur Battery Chapter 2, Chapman & Hall (1985).
-
Hueso, K. B., Armand, M. & Rojo, T. High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734–749 (2013).
(
10.1039/c3ee24086j
) / Energy Environ. Sci. by KB Hueso (2013) -
Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015).
(
10.1021/acscentsci.5b00328
) / ACS Cent. Sci. by ZW Seh (2015) -
Xin, S., Yin, Y.-X., Guo, Y.-G. & Wan, L.-J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 26, 1261–1265 (2014).
(
10.1002/adma.201304126
) / Adv. Mater. by S Xin (2014) -
Komaba, S. et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 3, 4165–4168 (2011).
(
10.1021/am200973k
) / ACS Appl. Mater. Interfaces by S Komaba (2011) -
Yin, Y.-X., Xin, S., Guo, Y.-G. & Wan, L.-J. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).
(
10.1002/anie.201304762
) / Angew. Chem. Int. Ed. by Y-X Yin (2013) -
Su, Y.-S., Fu, Y., Cochell, T. & Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 4, 2985 (2013).
(
10.1038/ncomms3985
) / Nat. Commun. by Y-S Su (2013) -
Peng, H.-J. & Zhang, Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew. Chem. Int. Ed. 54, 11018–11020 (2015).
(
10.1002/anie.201505444
) / Angew. Chem. Int. Ed. by H-J Peng (2015) -
Zhang, B., Qin, X., Li, G. R. & Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010).
(
10.1039/c002639e
) / Energy Environ. Sci. by B Zhang (2010) -
Li, Z. et al. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4, 1301473–1301480 (2014).
(
10.1002/aenm.201301473
) / Adv. Energy Mater. by Z Li (2014) -
Xin, S. et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012).
(
10.1021/ja308170k
) / J. Am. Chem. Soc. by S Xin (2012) -
Wu, H. B. et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chemistry 19, 10804–10808 (2013).
(
10.1002/chem.201301689
) / Chemistry by HB Wu (2013) -
Fu, C., Wong, B. M., Bozhilov, K. N. & Guo, J. Solid state lithiation-delithiation of sulphur in sub-nano confinement: a new concept for designing lithium-sulphur batteries. Chem. Sci. 7, 1224–1232 (2016).
(
10.1039/C5SC03419A
) / Chem. Sci. by C Fu (2016) -
Schaefer, J. L., Moganty, S. S., Yanga, D. A. & Archer, L. A. Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094–10101 (2011).
(
10.1039/c0jm04171h
) / J. Mater. Chem. by JL Schaefer (2011) -
Schaefer, J. et al. Electrolytes for high-energy lithium batteries. Appl. Nanosci. 2, 91–109 (2012).
(
10.1007/s13204-011-0044-x
) / Appl. Nanosci. by J Schaefer (2012) -
Lu, Y., Das, S. K., Moganty, S. S. & Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012).
(
10.1002/adma.201201953
) / Adv. Mater. by Y Lu (2012) -
Lu, Y., Moganty, S. S., Schaefer, J. L. & Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes. J. Mater. Chem. 22, 4066–4072 (2012).
(
10.1039/c2jm15345a
) / J. Mater. Chem. by Y Lu (2012) -
Lu, Y., Korf, K., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014).
(
10.1002/anie.201307137
) / Angew. Chem. Int. Ed. by Y Lu (2014) -
Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073–1402079 (2015).
(
10.1002/aenm.201402073
) / Adv. Energy Mater. by Y Lu (2015) -
Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014).
(
10.1149/2.085405jes
) / J. Electrochem. Soc. by MD Tikekar (2014) -
Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015).
(
10.1021/acs.accounts.5b00427
) / Acc. Chem. Res. by Z Tu (2015) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) - McMillan, R. S., Worsfold, D. J., Murray, J. J., Davidson, I. & Shu, Z. X. Electrolyte comprising fluoro-ethylene carbonate and propylene carbonate, for alkali metal-ion secondary battery, US patent 6506524 B1 (2003).
-
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nano 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nano by G Zheng (2014) -
Hwang, T. H., Jung, D. S., Kim, J.-S., Kim, B. G. & Choi, J. W. One-dimensional carbon-sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett. 13, 4532–4538 (2013).
(
10.1021/nl402513x
) / Nano Lett. by TH Hwang (2013) -
Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, 988–998 (2015).
(
10.1126/science.aaa8075
) / Science by AG Slater (2015) -
Cravillon, J. et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 23, 2130–2141 (2011).
(
10.1021/cm103571y
) / Chem. Mater. by J Cravillon (2011) -
Wei, S., Ma, L., Hendrickson, K. E., Tu, Z. & Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015).
(
10.1021/jacs.5b08113
) / J. Am. Chem. Soc. by S Wei (2015) -
Meyer, B. Elemental sulfur. Chem. Rev. 76, 367–388 (1976).
(
10.1021/cr60301a003
) / Chem. Rev. by B Meyer (1976) -
Moon, S. et al. Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater. 25, 6547–6553 (2013).
(
10.1002/adma.201303166
) / Adv. Mater. by S Moon (2013) -
Erlich, R. H. & Popov, A. I. Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. J. Am. Chem. Soc. 93, 5620–5623 (1971).
(
10.1021/ja00751a005
) / J. Am. Chem. Soc. by RH Erlich (1971) -
Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).
(
10.1039/c1ee01782a
) / Energy Environ. Sci. by SP Ong (2011) -
Kim, I. et al. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sources 301, 332–337 (2016).
(
10.1016/j.jpowsour.2015.09.120
) / J. Power Sources by I Kim (2016) -
Yu, X. & Manthiram, A. Ambient-temperature sodium-sulfur batteries with a sodiated nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy Mater. 5, 1500350–1500355 (2015).
(
10.1002/aenm.201500350
) / Adv. Energy Mater. by X Yu (2015) -
Yu, X. & Manthiram, A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 1, 1275–1280 (2014).
(
10.1002/celc.201402112
) / ChemElectroChem by X Yu (2014) -
Yu, X. & Manthiram, A. Room-temperature sodium-sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118, 22952–22959 (2014).
(
10.1021/jp507655u
) / J. Phys. Chem. C by X Yu (2014) -
Yu, X. & Manthiram, A. Highly reversible room-temperature sulfur/long-chain sodium polysulfide batteries. J. Phys. Chem. Lett. 5, 1943–1947 (2014).
(
10.1021/jz500848x
) / J. Phys. Chem. Lett. by X Yu (2014) -
Bauer, I., Kohl, M., Althues, H. & Kaskel, S. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. Chem. Commun. 50, 3208–3210 (2014).
(
10.1039/c4cc00161c
) / Chem. Commun. by I Bauer (2014) -
Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
(
10.1038/ncomms8436
) / Nat. Commun. by W Li (2015) -
Yim, T. et al. Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li-S batteries. Electrochim. Acta 107, 454–460 (2013).
(
10.1016/j.electacta.2013.06.039
) / Electrochim. Acta by T Yim (2013) -
Xu, W.-T. et al. Towards stable lithium-sulfur batteries with a low self-discharge rate: ion diffusion modulation and anode protection. ChemSusChem 8, 2892–2901 (2015).
(
10.1002/cssc.201500428
) / ChemSusChem by W-T Xu (2015) -
Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).
(
10.1021/cr500062v
) / Chem. Rev. by A Manthiram (2014) -
Cohn, G., Ma, L. & Archer, L. A. A novel non-aqueous aluminum sulfur battery. J. Power Sources 283, 416–422 (2015).
(
10.1016/j.jpowsour.2015.02.131
) / J. Power Sources by G Cohn (2015) -
Mirkin, M. V., Bulhoes, L. O. S. & Bard, A. J. Determination of the kinetic parameters for the electroreduction of fullerene C60 by scanning electrochemical microscopy and fast scan cyclic voltammetry. J. Am. Chem. Soc. 115, 201–204 (1993).
(
10.1021/ja00054a028
) / J. Am. Chem. Soc. by MV Mirkin (1993) -
Kundu, D., Talaie, E., Duffort, V. & Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 54, 3431–3448 (2015).
(
10.1002/anie.201410376
) / Angew. Chem. Int. Ed. by D Kundu (2015) -
Wang, L. et al. A Superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 52, 1964–1967 (2013).
(
10.1002/anie.201206854
) / Angew. Chem. Int. Ed. by L Wang (2013) -
Xu, S., Lu, Y., Wang, H., Abruna, H. D. & Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2, 17723–17729 (2014).
(
10.1039/C4TA04130E
) / J. Mater. Chem. A by S Xu (2014) -
Liang, X. et al. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015).
(
10.1038/ncomms6682
) / Nat. Commun. by X Liang (2015) -
Kawase, A., Shirai, S., Yamoto, Y., Arakawa, R. & Takata, T. Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique. Phys. Chem. Chem. Phys. 16, 9344–9350 (2014).
(
10.1039/C4CP00958D
) / Phys. Chem. Chem. Phys. by A Kawase (2014) -
Manan, N. S. A. et al. Electrochemistry of Sulfur and Polysulfides in Ionic Liquids. The Journal of Physical Chemistry B 115, 13873–13879 (2011).
(
10.1021/jp208159v
) / The Journal of Physical Chemistry B by NSA Manan (2011) -
Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed‐conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977).
(
10.1149/1.2133112
) / J. Electrochem. Soc. by W Weppner (1977) -
Kamlet, M. J., Carr, P. W., Taft, R. W. & Abraham, M. H. Linear solvation energy relationships. 13. Relationship between the Hildebrand solubility parameter, .delta.H, and the solvatochromic parameter, .pi.*. J. Am. Chem. Soc. 103, 6062–6066 (1981).
(
10.1021/ja00410a013
) / J. Am. Chem. Soc. by MJ Kamlet (1981)
Dates
Type | When |
---|---|
Created | 9 years, 2 months ago (June 9, 2016, 9:52 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:29 a.m.) |
Indexed | 1 day, 15 hours ago (Aug. 23, 2025, 1:13 a.m.) |
Issued | 9 years, 2 months ago (June 9, 2016) |
Published | 9 years, 2 months ago (June 9, 2016) |
Published Online | 9 years, 2 months ago (June 9, 2016) |
@article{Wei_2016, title={A stable room-temperature sodium–sulfur battery}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11722}, DOI={10.1038/ncomms11722}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wei, Shuya and Xu, Shaomao and Agrawral, Akanksha and Choudhury, Snehashis and Lu, Yingying and Tu, Zhengyuan and Ma, Lin and Archer, Lynden A.}, year={2016}, month=jun }