Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Grüring, C., Heiber, A., Kruse, F., Ungefehr, J., Gilberger, T.-W., & Spielmann, T. (2011). Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nature Communications, 2(1).

Authors 6
  1. Christof Grüring (first)
  2. Arlett Heiber (additional)
  3. Florian Kruse (additional)
  4. Johanna Ungefehr (additional)
  5. Tim-Wolf Gilberger (additional)
  6. Tobias Spielmann (additional)
References 60 Referenced 192
  1. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y. & Hay, S. I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005). (10.1038/nature03342) / Nature by RW Snow (2005)
  2. Maier, A. G., Cooke, B. M., Cowman, A. F. & Tilley, L. Malaria parasite proteins that remodel the host erythrocyte. Nat. Rev. Microbiol. 7, 341–354 (2009). (10.1038/nrmicro2110) / Nat. Rev. Microbiol. by AG Maier (2009)
  3. Bannister, L. H., Hopkins, J. M., Fowler, R. E., Krishna, S. & Mitchell, G. H. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today 16, 427–433 (2000). (10.1016/S0169-4758(00)01755-5) / Parasitol. Today by LH Bannister (2000)
  4. Aikawa, M., Huff, C. G. & Sprinz, H. Fine structure of the asexual stages of Plasmodium elongatum. J. Cell Biol. 34, 229–249 (1967). (10.1083/jcb.34.1.229) / J. Cell Biol. by M Aikawa (1967)
  5. Langreth, S. G., Jensen, J. B., Reese, R. T. & Trager, W. Fine structure of human malaria in vitro. J. Protozool. 25, 443–452 (1978). (10.1111/j.1550-7408.1978.tb04167.x) / J. Protozool. by SG Langreth (1978)
  6. Marti, M., Good, R. T., Rug, M., Knuepfer, E. & Cowman, A. F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306, 1930–1933 (2004). (10.1126/science.1102452) / Science by M Marti (2004)
  7. Abu Bakar, N., Klonis, N., Hanssen, E., Chan, C. & Tilley, L. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J. Cell Sci. 123, 441–450 (2010). (10.1242/jcs.061499) / J. Cell Sci. by N Abu Bakar (2010)
  8. Elliott, D. A. et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 2463–2468 (2008). (10.1073/pnas.0711067105) / Proc. Natl Acad. Sci. USA by DA Elliott (2008)
  9. Lazarus, M. D. et al. A new model for hemoglobin ingestion and transport by the human malaria parasite Plasmodium falciparum. J. Cell Sci. 121, 1937–1949 (2008). (10.1242/jcs.023150) / J. Cell Sci. by MD Lazarus (2008)
  10. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002). (10.1038/415673a) / Nature by LH Miller (2002)
  11. Baruch, D. I. et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87 (1995). (10.1016/0092-8674(95)90054-3) / Cell by DI Baruch (1995)
  12. Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995). (10.1016/0092-8674(95)90056-X) / Cell by JD Smith (1995)
  13. Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995). (10.1016/0092-8674(95)90055-1) / Cell by XZ Su (1995)
  14. Wickham, M. E. et al. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J. 20, 5636–5649 (2001). (10.1093/emboj/20.20.5636) / EMBO J. by ME Wickham (2001)
  15. Bannister, L. H., Hopkins, J. M., Margos, G., Dluzewski, A. R. & Mitchell, G. H. Three-dimensional ultrastructure of the ring stage of Plasmodium falciparum: evidence for export pathways. Microsc. Microanal. 10, 551–562 (2004). (10.1017/S1431927604040917) / Microsc. Microanal. by LH Bannister (2004)
  16. Aikawa, M., Uni, Y., Andrutis, A. T. & Howard, R. J. Membrane-associated electron-dense material of the asexual stages of Plasmodium falciparum: evidence for movement from the intracellular parasite to the erythrocyte membrane. Am. J. Trop. Med. Hyg. 35, 30–36 (1986). (10.4269/ajtmh.1986.35.30) / Am. J. Trop. Med. Hyg. by M Aikawa (1986)
  17. Spycher, C. et al. Genesis of and trafficking to the Maurer's clefts of Plasmodium falciparum-infected erythrocytes. Mol. Cell. Biol. 26, 4074–4085 (2006). (10.1128/MCB.00095-06) / Mol. Cell. Biol. by C Spycher (2006)
  18. Tilley, L., Sougrat, R., Lithgow, T. & Hanssen, E. The twists and turns of Maurer′s cleft trafficking in P. falciparum-infected erythrocytes. Traffic 9, 187–197 (2008). (10.1111/j.1600-0854.2007.00684.x) / Traffic by L Tilley (2008)
  19. Wickert, H., Gottler, W., Krohne, G. & Lanzer, M. Maurer′s cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur. J. Cell. Biol. 83, 567–582 (2004). (10.1078/0171-9335-00432) / Eur. J. Cell. Biol. by H Wickert (2004)
  20. Wickert, H. & Krohne, G. The complex morphology of Maurer′s clefts: from discovery to three-dimensional reconstructions. Trends Parasitol. 23, 502–509 (2007). (10.1016/j.pt.2007.08.008) / Trends Parasitol. by H Wickert (2007)
  21. deKoning-Ward, T. F. et al. A newly discovered protein export machine in malaria parasites. Nature 459, 945–949 (2009). (10.1038/nature08104) / Nature by TF deKoning-Ward (2009)
  22. Spielmann, T. et al. A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol. Biol. Cell 17, 3613–3624 (2006). (10.1091/mbc.e06-04-0291) / Mol. Biol. Cell by T Spielmann (2006)
  23. Haase, S. & deKoning-Ward, T. F. New insights into protein export in malaria parasites. Cell. Microbiol. 12, 580–587 (2010). (10.1111/j.1462-5822.2010.01455.x) / Cell. Microbiol. by S Haase (2010)
  24. Taraschi, T. F. et al. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Int. J. Parasitol. 31, 1381–1391 (2001). (10.1016/S0020-7519(01)00256-9) / Int. J. Parasitol. by TF Taraschi (2001)
  25. Papakrivos, J., Newbold, C. I. & Lingelbach, K. A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of the Plasmodium falciparum cytoadherence molecule PfEMP-1. Mol. Microbiol. 55, 1272–1284 (2005). (10.1111/j.1365-2958.2004.04468.x) / Mol. Microbiol. by J Papakrivos (2005)
  26. Laveran, A. Nature parasitaire des accidents de l′impaludism: description d′un nouveau parasite trouvé dans le sang des maladesatteints de fièvre palustre (J.-B. Baillière, 1881).
  27. Dvorak, J. A., Miller, L. H., Whitehouse, W. C. & Shiroishi, T. Invasion of erythrocytes by malaria merozoites. Science 187, 748–750 (1975). (10.1126/science.803712) / Science by JA Dvorak (1975)
  28. Treeck, M. et al. Functional analysis of the leading malaria vaccine candidate AMA-1 reveals an essential role for the cytoplasmic domain in the invasion process. PLoS Pathog. 5, e1000322 (2009). (10.1371/journal.ppat.1000322) / PLoS Pathog. by M Treeck (2009)
  29. Gilson, P. R. & Crabb, B. S. Morphology and kinetics of the three distinct phases of erythrocyte invasion by Plasmodium falciparum merozoites. Int. J. Parasitol. 39, 91–96 (2009). (10.1016/j.ijpara.2008.09.007) / Int. J. Parasitol. by PR Gilson (2009)
  30. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, E5 (2003). (10.1371/journal.pbio.0000005) / PLoS Biol. by Z Bozdech (2003)
  31. Carlton, J. M. et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419, 512–519 (2002). (10.1038/nature01099) / Nature by JM Carlton (2002)
  32. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002). (10.1038/nature01097) / Nature by MJ Gardner (2002)
  33. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003). (10.1126/science.1087025) / Science by KG Le Roch (2003)
  34. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998). (10.1126/science.280.5363.547) / Science by AI Lamond (1998)
  35. Maddox, P. et al. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 144, 977–987 (1999). (10.1083/jcb.144.5.977) / J. Cell Biol. by P Maddox (1999)
  36. Thomas, C. F. & White, J. G. Four-dimensional imaging: the exploration of space and time. Trends Biotechnol. 16, 175 (1998). (10.1016/S0167-7799(97)01169-4) / Trends Biotechnol. by CF Thomas (1998)
  37. Haase, S. et al. Sequence requirements for the export of the Plasmodium falciparum Maurer′s clefts protein REX2. Mol. Microbiol. 71, 1003–1017 (2009). (10.1111/j.1365-2958.2008.06582.x) / Mol. Microbiol. by S Haase (2009)
  38. Spielmann, T. et al. Reliable transfection of Plasmodium falciparum using non-commercial plasmid mini preparations. Int. J. Parasitol. 36, 1245–1248 (2006). (10.1016/j.ijpara.2006.06.017) / Int. J. Parasitol. by T Spielmann (2006)
  39. Insall, R. H. & Machesky, L. M. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009). (10.1016/j.devcel.2009.08.012) / Dev. Cell by RH Insall (2009)
  40. Schüler, H. & Matuschewski, K. Regulation of apicomplexan microfilament dynamics by a minimal set of actin-binding proteins. Traffic 7, 1433–1439 (2006). (10.1111/j.1600-0854.2006.00484.x) / Traffic by H Schüler (2006)
  41. Smythe, W. A., Joiner, K. A. & Hoppe, H. C. Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum. Cell. Microbiol. 10, 452–464 (2008). / Cell. Microbiol. by WA Smythe (2008)
  42. Sellin, L. C. & McArdle, J. J. Multiple effects of 2,3-butanedione monoxime. Pharmacol. Toxicol. 74, 305–313 (1994). (10.1111/j.1600-0773.1994.tb01365.x) / Pharmacol. Toxicol. by LC Sellin (1994)
  43. Sargeant, T. J. et al. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7, R12 (2006). (10.1186/gb-2006-7-2-r12) / Genome Biol. by TJ Sargeant (2006)
  44. Adisa, A. et al. The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. J. Biol. Chem. 278, 6532–6542 (2003). (10.1074/jbc.M207039200) / J. Biol. Chem. by A Adisa (2003)
  45. Spielmann, T. & Beck, H. P. Analysis of stage-specific transcription in Plasmodium falciparum reveals a set of genes exclusively transcribed in ring stage parasites. Mol. Biochem. Parasitol. 111, 453–458 (2000). (10.1016/S0166-6851(00)00333-9) / Mol. Biochem. Parasitol. by T Spielmann (2000)
  46. Chudakov, D. M., Lukyanov, S. & Lukyanov, K. A. Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42, 553–563 (2007). (10.2144/000112470) / Biotechniques by DM Chudakov (2007)
  47. Jollivet, F. et al. Analysis of de novo Golgi complex formation after enzyme-based inactivation. Mol. Biol. Cell 18, 4637–4647 (2007). (10.1091/mbc.e07-08-0799) / Mol. Biol. Cell by F Jollivet (2007)
  48. Hanssen, E. et al. Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features. Mol. Microbiol. 67, 703–718 (2008). (10.1111/j.1365-2958.2007.06063.x) / Mol. Microbiol. by E Hanssen (2008)
  49. Hawthorne, P. L. et al. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer′s clefts. Mol. Biochem. Parasitol. 136, 181–189 (2004). (10.1016/j.molbiopara.2004.03.013) / Mol. Biochem. Parasitol. by PL Hawthorne (2004)
  50. Blisnick, T. et al. Pfsbp1, a Maurer's cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. Parasitol. 111, 107–121 (2000). (10.1016/S0166-6851(00)00301-7) / Mol. Biochem. Parasitol. by T Blisnick (2000)
  51. Petter, M. et al. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol. Biochem. Parasitol. 156, 51–61 (2007). (10.1016/j.molbiopara.2007.07.011) / Mol. Biochem. Parasitol. by M Petter (2007)
  52. Kriek, N. et al. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol. Microbiol. 50, 1215–1227 (2003). (10.1046/j.1365-2958.2003.03784.x) / Mol. Microbiol. by N Kriek (2003)
  53. Spielmann, T. & Gilberger, T. W. Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways? Trends Parasitol. 26, 6–10 (2010). (10.1016/j.pt.2009.10.001) / Trends Parasitol. by T Spielmann (2010)
  54. Pinder, J. C. & Gratzer, W. B. Structural and dynamic states of actin in the erythrocyte. J. Cell Biol. 96, 768–775 (1983). (10.1083/jcb.96.3.768) / J. Cell Biol. by JC Pinder (1983)
  55. Crabb, B. S. et al. Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol. Biol. 270, 263–276 (2004). / Methods Mol. Biol. by BS Crabb (2004)
  56. Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976). (10.1126/science.781840) / Science by W Trager (1976)
  57. Fidock, D. A. & Wellems, T. E. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc. Natl Acad. Sci. USA 94, 10931–10936 (1997). (10.1073/pnas.94.20.10931) / Proc. Natl Acad. Sci. USA by DA Fidock (1997)
  58. Aley, S. B., Sherwood, J. A., Marsh, K., Eidelman, O. & Howard, R. J. Identification of isolate-specific proteins on sorbitol-enriched Plasmodium falciparum infected erythrocytes from Gambian patients. Parasitology 92, 511–525 (1986). (10.1017/S0031182000065410) / Parasitology by SB Aley (1986)
  59. Boddey, J. A., Moritz, R. L., Simpson, R. J. & Cowman, A. F. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10, 285–299 (2009). (10.1111/j.1600-0854.2008.00864.x) / Traffic by JA Boddey (2009)
  60. Spielmann, T., Fergusen, D. J. & Beck, H. P. etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. Mol. Biol. Cell 14, 1529–1544 (2003). (10.1091/mbc.e02-04-0240) / Mol. Biol. Cell by T Spielmann (2003)
Dates
Type When
Created 14 years, 7 months ago (Jan. 25, 2011, 6:43 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 8:05 p.m.)
Indexed 4 weeks, 1 day ago (Aug. 2, 2025, 12:59 a.m.)
Issued 14 years, 7 months ago (Jan. 25, 2011)
Published 14 years, 7 months ago (Jan. 25, 2011)
Published Online 14 years, 7 months ago (Jan. 25, 2011)
Funders 0

None

@article{Gr_ring_2011, title={Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions}, volume={2}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1169}, DOI={10.1038/ncomms1169}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Grüring, Christof and Heiber, Arlett and Kruse, Florian and Ungefehr, Johanna and Gilberger, Tim-Wolf and Spielmann, Tobias}, year={2011}, month=jan }