Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Bibliography

Zheng, H., Cao, A., Weinberger, C. R., Huang, J. Y., Du, K., Wang, J., Ma, Y., Xia, Y., & Mao, S. X. (2010). Discrete plasticity in sub-10-nm-sized gold crystals. Nature Communications, 1(1).

Authors 9
  1. He Zheng (first)
  2. Ajing Cao (additional)
  3. Christopher R. Weinberger (additional)
  4. Jian Yu Huang (additional)
  5. Kui Du (additional)
  6. Jianbo Wang (additional)
  7. Yanyun Ma (additional)
  8. Younan Xia (additional)
  9. Scott X. Mao (additional)
References 36 Referenced 312
  1. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004). (10.1126/science.1098993) / Science by MD Uchic (2004)
  2. Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005). (10.1016/j.actamat.2004.12.031) / Acta Mater. by JR Greer (2005)
  3. Ng, K. S. & Ngan, A. H. W. Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712–1720 (2008). (10.1016/j.actamat.2007.12.016) / Acta Mater. by KS Ng (2008)
  4. Sorensen, M. R., Brandbyge, M. & Jacobsen, K. W. Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms. Phys. Rev. B 57, 3283–3294 (1998). (10.1103/PhysRevB.57.3283) / Phys. Rev. B by MR Sorensen (1998)
  5. Park, H. S., Gall, K. & Zimmerman, J. A. Deformation of FCC nano-crystals by twinning and slip. J. Mech. Phys. Solids 54, 1862–1881 (2006). (10.1016/j.jmps.2006.03.006) / J. Mech. Phys. Solids by HS Park (2006)
  6. Liang, W. & Zhou, M. Response of copper nanowires in dynamic tensile deformation. Proc. Inst. Mech. Eng. C 218, 599–606 (2004). (10.1243/095440604774202231) / Proc. Inst. Mech. Eng. C by W Liang (2004)
  7. Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008). (10.1103/PhysRevLett.100.025502) / Phys. Rev. Lett. by T Zhu (2008)
  8. Kizuka, T. Atomic process of point contact in gold studied by time-resolved high-resolution transmission electron microscopy. Phys. Rev. Lett. 81, 4448–4451 (1998). (10.1103/PhysRevLett.81.4448) / Phys. Rev. Lett. by T Kizuka (1998)
  9. Rabkin, E. & Srolovitz, D. Onset of plasticity in gold nanopillar compression. Nano Lett. 7, 101–107 (2007). (10.1021/nl0622350) / Nano Lett. by E Rabkin (2007)
  10. Sun, L., Krasheninnikov, A. V., Ahlgren, T., Nordlund, K. & Banhart, F. Plastic deformation of single nanometer-sized crystals. Phys. Rev. Lett. 101, 156101 (2008). (10.1103/PhysRevLett.101.156101) / Phys. Rev. Lett. by L Sun (2008)
  11. Cao, A., Wei, Y. & Mao, S. X. Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl. Phys. Lett. 90, 151909 (2007). (10.1063/1.2721367) / Appl. Phys. Lett. by A Cao (2007)
  12. Agrait, N., Rubio, G. & Vieira, S. Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995). (10.1103/PhysRevLett.74.3995) / Phys. Rev. Lett. by N Agrait (1995)
  13. Oh, S. H., Legros, M., Kiener, D. & Dehm, G. In situ observation of dislocation nucleation and escape in a submicrometre aluminum single crystal. Nat. Mater. 8, 95–100 (2009). (10.1038/nmat2370) / Nat. Mater. by SH Oh (2009)
  14. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998). (10.1038/27399) / Nature by H Ohnishi (1998)
  15. Rodrigues, V. & Ugarte, D. Real-time imaging of atomistic process in one-atom-thick metal junctions. Phys. Rev. B 63, 073405 (2001). (10.1103/PhysRevB.63.073405) / Phys. Rev. B by V Rodrigues (2001)
  16. Tavazza, F., Levine, L. E. & Chaka, A. M. Elongation and breaking mechanisms of gold nanowires under a wide range of tensile conditions. J. Appl. Phys. 106, 043522 (2009). (10.1063/1.3200957) / J. Appl. Phys. by F Tavazza (2009)
  17. Deng, C. & Sansoz, F. Near-Ideal strength in gold nanowires achieved through microstructural design. ACS Nano. 3, 3001–3008 (2009). (10.1021/nn900668p) / ACS Nano. by C Deng (2009)
  18. Wang, J., Huang, H., Kesapragada, S. V. & Gall, D. Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 5, 2505–2508 (2005). (10.1021/nl0518425) / Nano Lett. by J Wang (2005)
  19. Du, K., Rau, Y., Jin-Phillipp, N. Y. & Phillipp, F. Lattice distortion analysis directly from high resolution transmission electron microscopy images—the LADIA program package. J. Mater. Sci. Technol. 18, 135–138 (2002). / J. Mater. Sci. Technol. by K Du (2002)
  20. Brochard, S., Beauchamp, P. & Grilhé, J. Stress concentration near a surface step and shear localization. Phys. Rev. B 61, 8707–8713 (1999). (10.1103/PhysRevB.61.8707) / Phys. Rev. B by S Brochard (1999)
  21. Diao, J., Gall, K. & Dunn, M. L. Atomistic simulation of the structure and elastic properties of gold nanowires. J. Mech. Phys. Solids 52, 1935–1962 (2004). (10.1016/j.jmps.2004.03.009) / J. Mech. Phys. Solids by J Diao (2004)
  22. Marszalek, P. E., Greenleaf, W. J., Li, H., Oberhauser, A. F. & Fernandez, J. M. Atomic force microscopy captures quantized plastic deformation in gold nanowires. Proc. Natl Acad. Sci. USA 97, 6282–6286 (2000). (10.1073/pnas.97.12.6282) / Proc. Natl Acad. Sci. USA by PE Marszalek (2000)
  23. Diao, J., Gall, K. & Dunn, M. L. Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656–660 (2003). (10.1038/nmat977) / Nat. Mater. by J Diao (2003)
  24. Bowles, J. S. & Wayman, C. M. The bain strain, lattice correspondences, and deformations related to martensitic transformations. Metall. Mater. Trans. B 3, 1113–1121 (1972). (10.1007/BF02642442) / Metall. Mater. Trans. B by JS Bowles (1972)
  25. Diao, J., Gall, K. & Dunn, M. L. Surface stress driven reorientation of gold nanowires. Phys. Rev. B 70, 075413 (2004). (10.1103/PhysRevB.70.075413) / Phys. Rev. B by J Diao (2004)
  26. Ji, C. & Park, H. S. Geometric effects on the inelastic deformation of metal nano-crystals. Appl. Phys. Lett. 89, 181916 (2006). (10.1063/1.2372748) / Appl. Phys. Lett. by C Ji (2006)
  27. Egerton, R. F., Li, P. & Malac, M. Radiation damage in TEM and SEM. Micron 35, 399–409 (2004). (10.1016/j.micron.2004.02.003) / Micron by RF Egerton (2004)
  28. Williams, P. Motion of small gold clusters in the electron microscope. Appl. Phys. Lett. 50, 1760–1762 (1987). (10.1063/1.97739) / Appl. Phys. Lett. by P Williams (1987)
  29. Jose-Yacaman, M. et al. Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 105, 9703–9711 (2005). (10.1021/jp0509459) / J. Phys. Chem. B by M Jose-Yacaman (2005)
  30. Huang, J. Y. et al. Superplastic carbon nanotubes. Nature 439, 281 (2006). (10.1038/439281a) / Nature by JY Huang (2006)
  31. Lu, X., Yavuz, M. S., Tuan, H. Y., Korgel, B. A. & Xia, Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008). (10.1021/ja803343m) / J. Am. Chem. Soc. by X Lu (2008)
  32. Lu, Y., Huang, J. Y., Wang, C., Sun, S. & Lou, J. Cold-welding of ultrathin gold nano-crystals. Nat. Nanotech. 5, 218–224 (2010). (10.1038/nnano.2010.4) / Nat. Nanotech. by Y Lu (2010)
  33. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995) http://lammps.sandia.gov/. (10.1006/jcph.1995.1039) / J. Comput. Phys. by SJ Plimpton (1995)
  34. Grochola, G., Russo, S. P. & Snook, I. K. On fitting a gold embedded atom method potential using the force matching method. J. Chem. Phys. 123, 204719 (2005). (10.1063/1.2124667) / J. Chem. Phys. by G Grochola (2005)
  35. Seitz, H., Ahlborn, K., Seibt, M. & Schroter, W. Sensitivity limits of strain mapping procedures using high-resolution electron microscopy. J. Microsc. 190, 184–189 (1998). (10.1046/j.1365-2818.1998.3100866.x) / J. Microsc. by H Seitz (1998)
  36. Du, K. & Phillipp, F. On the accuracy of lattice-distortion analysis directly from high-resolution transmission electron micrographs. J. Microsc. 221, 63–71 (2006). (10.1111/j.1365-2818.2006.01536.x) / J. Microsc. by K Du (2006)
Dates
Type When
Created 14 years, 8 months ago (Dec. 21, 2010, 6:18 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 11:03 p.m.)
Indexed 3 days, 11 hours ago (Aug. 19, 2025, 6:56 a.m.)
Issued 14 years, 8 months ago (Dec. 21, 2010)
Published 14 years, 8 months ago (Dec. 21, 2010)
Published Online 14 years, 8 months ago (Dec. 21, 2010)
Funders 0

None

@article{Zheng_2010, title={Discrete plasticity in sub-10-nm-sized gold crystals}, volume={1}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms1149}, DOI={10.1038/ncomms1149}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zheng, He and Cao, Ajing and Weinberger, Christopher R. and Huang, Jian Yu and Du, Kui and Wang, Jianbo and Ma, Yanyun and Xia, Younan and Mao, Scott X.}, year={2010}, month=dec }