Abstract
AbstractLysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel.
References
47
Referenced
144
-
Sekizawa, Y., Kubo, T., Kobayashi, H., Nakajima, T. & Natori, S. Molecular cloning of cDNA for lysenin, a novel protein in the earthworm Eisenia foetida that causes contraction of rat vascular smooth muscle. Gene 191, 97–102 (1997).
(
10.1016/S0378-1119(97)00047-4
) / Gene by Y Sekizawa (1997) -
Parker, M. W. et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367, 292–295 (1994).
(
10.1038/367292a0
) / Nature by MW Parker (1994) -
Cole, A. R. et al. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat. Struct. Mol. Biol. 11, 797–798 (2004).
(
10.1038/nsmb804
) / Nat. Struct. Mol. Biol. by AR Cole (2004) -
Ballard, J., Sokolov, Y., Yuan, W. L., Kagan, B. L. & Tweten, R. K. Activation and mechanism of Clostridium septicum alpha toxin. Mol. Microbiol. 10, 627–634 (1993).
(
10.1111/j.1365-2958.1993.tb00934.x
) / Mol. Microbiol. by J Ballard (1993) -
Akiba, T. et al. Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells. J. Mol. Biol. 386, 121–133 (2009).
(
10.1016/j.jmb.2008.12.002
) / J. Mol. Biol. by T Akiba (2009) -
Iacovache, I., Bischofberger, M. & van der Goot, F. G. Structure and assembly of pore-forming proteins. Curr. Opin. Struct. Biol. 20, 241–246 (2010).
(
10.1016/j.sbi.2010.01.013
) / Curr. Opin. Struct. Biol. by I Iacovache (2010) -
Sekizawa, Y., Hagiwara, K., Nakajima, T. & Kobayashi, H. A novel protein, lysenin, that causes contraction of the isolated rat aorta: its purification from the coelomic fluid of the earthworm Eisenia foetida. Biomed. Res. 17, 197–203 (1996).
(
10.2220/biomedres.17.197
) / Biomed. Res. by Y Sekizawa (1996) -
Herec, M. et al. Secondary structure and orientation of the pore-forming toxin lysenin in a sphingomyelin-containing membrane. Biochim. Biophys. Acta 1778, 872–879 (2008).
(
10.1016/j.bbamem.2007.12.004
) / Biochim. Biophys. Acta by M Herec (2008) -
De Colibus, L. et al. Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 20, 1498–1507 (2012).
(
10.1016/j.str.2012.06.011
) / Structure by L De Colibus (2012) -
Yilmaz, N. & Kobayashi, T. Visualization of lipid membrane reorganization induced by a pore-forming toxin using high-speed atomic force microscopy. ACS Nano 9, 7960–7967 (2015).
(
10.1021/acsnano.5b01041
) / ACS Nano by N Yilmaz (2015) -
Yilmaz, N. et al. Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. Biophys. J. 105, 1397–1405 (2013).
(
10.1016/j.bpj.2013.07.052
) / Biophys. J. by N Yilmaz (2013) -
Kobayashi, H., Ohta, N. & Umeda, M. Biology of lysenin, a protein in the coelomic fluid of the earthworm Eisenia foetida. Int. Rev. Cytol. 236, 45–99 (2004).
(
10.1016/S0074-7696(04)36002-X
) / Int. Rev. Cytol. by H Kobayashi (2004) -
Yamaji, A. et al. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306 (1998).
(
10.1074/jbc.273.9.5300
) / J. Biol. Chem. by A Yamaji (1998) -
Briggs, D. C. et al. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J. Mol. Biol. 413, 138–149 (2011).
(
10.1016/j.jmb.2011.07.066
) / J. Mol. Biol. by DC Briggs (2011) -
Mancheno, J. M. et al. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 280, 17251–17259 (2005).
(
10.1074/jbc.M413933200
) / J. Biol. Chem. by JM Mancheno (2005) -
Akiba, T. et al. Nontoxic crystal protein from Bacillus thuringiensis demonstrates a remarkable structural similarity to beta-pore-forming toxins. Proteins 63, 243–248 (2006).
(
10.1002/prot.20843
) / Proteins by T Akiba (2006) -
Leone, P. et al. X-ray and cryo-electron microscopy structures of monalysin pore-forming toxin reveal multimerization of the pro-form. J. Biol. Chem. 290, 13191–13201 (2015).
(
10.1074/jbc.M115.646109
) / J. Biol. Chem. by P Leone (2015) -
Xu, C. et al. Crystal structure of Cry51Aa1: a potential novel insecticidal aerolysin-type beta-pore-forming toxin from Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 462, 184–189 (2015).
(
10.1016/j.bbrc.2015.04.068
) / Biochem. Biophys. Res. Commun. by C Xu (2015) -
Bruhn, H., Winkelmann, J., Andersen, C., Andra, J. & Leippe, M. Dissection of the mechanisms of cytolytic and antibacterial activity of lysenin, a defence protein of the annelid Eisenia fetida. Dev. Comp. Immunol. 30, 597–606 (2006).
(
10.1016/j.dci.2005.09.002
) / Dev. Comp. Immunol. by H Bruhn (2006) -
Kwiatkowska, K. et al. Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding. Mol. Membr. Biol. 24, 121–134 (2007).
(
10.1080/09687860600995540
) / Mol. Membr. Biol. by K Kwiatkowska (2007) -
Pantelic, R. S., Meyer, J. C., Kaiser, U., Baumeister, W. & Plitzko, J. M. Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 170, 152–156 (2010).
(
10.1016/j.jsb.2009.12.020
) / J. Struct. Biol. by RS Pantelic (2010) -
Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. Elife 3, e03665 (2014).
(
10.7554/eLife.03665
) / Elife by SH Scheres (2014) -
Savva, C. G. et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Biol. Chem. 288, 3512–3522 (2013).
(
10.1074/jbc.M112.430223
) / J. Biol. Chem. by CG Savva (2013) -
Song, L. et al. Structure of staphylococcal alpha-haemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).
(
10.1126/science.274.5294.1859
) / Science by L Song (1996) -
Olson, R., Nariya, H., Yokota, K., Kamio, Y. & Gouaux, E. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struct. Biol. 6, 134–140 (1999).
(
10.1038/5821
) / Nat. Struct. Biol. by R Olson (1999) -
Yan, X. X. et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. MBio 4, e00019–00013 (2013).
(
10.1128/mBio.00019-13
) / MBio by XX Yan (2013) -
De, S. & Olson, R. Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc. Natl Acad. Sci. USA 108, 7385–7390 (2011).
(
10.1073/pnas.1017442108
) / Proc. Natl Acad. Sci. USA by S De (2011) -
Schulz, G. E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565, 308–317 (2002).
(
10.1016/S0005-2736(02)00577-1
) / Biochim. Biophys. Acta by GE Schulz (2002) -
Szczesny, P. et al. Extending the aerolysin family: from bacteria to vertebrates. PLoS ONE 6, e20349 (2011).
(
10.1371/journal.pone.0020349
) / PLoS ONE by P Szczesny (2011) -
Trinquier, G. & Sanejouand, Y. H. Which effective property of amino acids is best preserved by the genetic code? Protein Eng. 11, 153–169 (1998).
(
10.1093/protein/11.3.153
) / Protein Eng. by G Trinquier (1998) -
Degiacomi, M. T. et al. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 9, 623–629 (2013).
(
10.1038/nchembio.1312
) / Nat. Chem. Biol. by MT Degiacomi (2013) -
Iacovache, I. et al. Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin. PLoS Pathog. 7, e1002135 (2011).
(
10.1371/journal.ppat.1002135
) / PLoS Pathog. by I Iacovache (2011) -
Miyata, S. et al. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J. Biol. Chem. 276, 13778–13783 (2001).
(
10.1074/jbc.M011527200
) / J. Biol. Chem. by S Miyata (2001) -
Sellman, B. R. & Tweten, R. K. The propeptide of Clostridium septicum alpha toxin functions as an intramolecular chaperone and is a potent inhibitor of alpha toxin-dependent cytolysis. Mol. Microbiol. 25, 429–440 (1997).
(
10.1046/j.1365-2958.1997.4541820.x
) / Mol. Microbiol. by BR Sellman (1997) -
Yamashita, K. et al. Crystal structure of the octameric pore of staphylococcal gamma-haemolysin reveals the beta-barrel pore formation mechanism by two components. Proc. Natl Acad. Sci. USA 108, 17314–17319 (2011).
(
10.1073/pnas.1110402108
) / Proc. Natl Acad. Sci. USA by K Yamashita (2011) -
Alam, J. M., Kobayashi, T. & Yamazaki, M. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin. Biochemistry 51, 5160–5172 (2012).
(
10.1021/bi300448g
) / Biochemistry by JM Alam (2012) -
Wimley, W. C., Creamer, T. P. & White, S. H. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 35, 5109–5124 (1996).
(
10.1021/bi9600153
) / Biochemistry by WC Wimley (1996) -
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
(
10.1016/j.pep.2005.01.016
) / Protein Expr. Purif. by FW Studier (2005) -
Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).
(
10.1038/nmeth.2472
) / Nat. Methods by X Li (2013) -
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
(
10.1016/j.jsb.2015.11.003
) / J. Struct. Biol. by K Zhang (2016) -
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
(
10.1016/j.jsb.2006.05.009
) / J. Struct. Biol. by G Tang (2007) -
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
(
10.1016/j.jsb.2012.09.006
) / J. Struct. Biol. by SH Scheres (2012) -
Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015).
(
10.1016/j.jsb.2014.11.010
) / J. Struct. Biol. by SH Scheres (2015) -
Swint-Kruse, L. & Brown, C. S. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Bioinformatics 21, 3327–3328 (2005).
(
10.1093/bioinformatics/bti511
) / Bioinformatics by L Swint-Kruse (2005) -
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
(
10.1107/S0907444904019158
) / Acta Crystallogr. D Biol. Crystallogr. by P Emsley (2004) -
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
(
10.1107/S0907444911001314
) / Acta Crystallogr. D Biol. Crystallogr. by GN Murshudov (2011) -
Nicholls, R. A., Fischer, M., McNicholas, S. & Murshudov, G. N. Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr. D Biol. Crystallogr. 70, 2487–2499 (2014).
(
10.1107/S1399004714016241
) / Acta Crystallogr. D Biol. Crystallogr. by RA Nicholls (2014)
Dates
Type | When |
---|---|
Created | 9 years, 4 months ago (April 6, 2016, 5:36 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:29 a.m.) |
Indexed | 3 weeks, 6 days ago (Aug. 6, 2025, 8:09 a.m.) |
Issued | 9 years, 4 months ago (April 6, 2016) |
Published | 9 years, 4 months ago (April 6, 2016) |
Published Online | 9 years, 4 months ago (April 6, 2016) |
@article{Bokori_Brown_2016, title={Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11293}, DOI={10.1038/ncomms11293}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Bokori-Brown, Monika and Martin, Thomas G. and Naylor, Claire E. and Basak, Ajit K. and Titball, Richard W. and Savva, Christos G.}, year={2016}, month=apr }