Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractObserving solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real’ atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

Bibliography

Pogatscher, S., Leutenegger, D., Schawe, J. E. K., Uggowitzer, P. J., & Löffler, J. F. (2016). Solid–solid phase transitions via melting in metals. Nature Communications, 7(1).

Authors 5
  1. S. Pogatscher (first)
  2. D. Leutenegger (additional)
  3. J. E. K. Schawe (additional)
  4. P. J. Uggowitzer (additional)
  5. J. F. Löffler (additional)
References 31 Referenced 85
  1. Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011) . (10.1038/nmat3078) / Nat. Mater. by RZ Khaliullin (2011)
  2. Offerman, S. E. et al. Grain nucleation and growth during phase transformations. Science 298, 1003–1005 (2002) . (10.1126/science.1076681) / Science by SE Offerman (2002)
  3. Chen, J. H., Costan, E., van Huis, M. A., Xu, Q. & Zandbergen, H. W. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312, 416–419 (2006) . (10.1126/science.1124199) / Science by JH Chen (2006)
  4. Blatter, A. & Von Allmen, M. Reversible amorphization in laser-quenched titanium alloys. Phys. Rev. Lett. 54, 2103–2106 (1985) . (10.1103/PhysRevLett.54.2103) / Phys. Rev. Lett. by A Blatter (1985)
  5. Schwarz, R. B. & Johnson, W. L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett. 51, 415–418 (1983) . (10.1103/PhysRevLett.51.415) / Phys. Rev. Lett. by RB Schwarz (1983)
  6. Gardner, C. R., Walsh, C. T. & Almarsson, Ö. Drugs as materials: valuing physical form in drug discovery. Nat. Rev. Drug Discov. 3, 926–934 (2004) . (10.1038/nrd1550) / Nat. Rev. Drug Discov. by CR Gardner (2004)
  7. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002) . (10.1038/416811a) / Nature by VJ Anderson (2002)
  8. Peng, Y. et al. Two-step nucleation mechanism in solid–solid phase transitions. Nat. Mater. 14, 101–108 (2015) . (10.1038/nmat4083) / Nat. Mater. by Y Peng (2015)
  9. Sanz, E. & Valeriani, C. Crystal-crystal transitions: mediated by a liquid. Nat. Mater. 14, 15–16 (2015) . (10.1038/nmat4182) / Nat. Mater. by E Sanz (2015)
  10. Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012) . (10.1038/nmat3275) / Nat. Mater. by J Orava (2012)
  11. Mathot, V. et al. The flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim. Acta 522, 36–45 (2011) . (10.1016/j.tca.2011.02.031) / Thermochim. Acta by V Mathot (2011)
  12. Zhuravlev, E. & Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim. Acta 505, 14–21 (2010) . (10.1016/j.tca.2010.03.020) / Thermochim. Acta by E Zhuravlev (2010)
  13. Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995) . (10.1126/science.267.5206.1947) / Science by AL Greer (1995)
  14. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960) . (10.1038/187869b0) / Nature by W Klement (1960)
  15. Schroers, J., Lohwongwatana, B., Johnson, W. L. & Peker, A. Gold based bulk metallic glass. Appl. Phys. Lett. 87, 061912 (2005) . (10.1063/1.2008374) / Appl. Phys. Lett. by J Schroers (2005)
  16. Zhang, W. et al. New Au-based bulk glassy alloys with ultralow glass transition temperature. Scr. Mater. 61, 744–747 (2009) . (10.1016/j.scriptamat.2009.06.020) / Scr. Mater. by W Zhang (2009)
  17. Pogatscher, S., Uggowitzer, P. J. & Löffler, J. F. In-situ probing of metallic glass formation and crystallization upon heating and cooling via fast differential scanning calorimetry. Appl. Phys. Lett. 104, 251908 (2014) . (10.1063/1.4884940) / Appl. Phys. Lett. by S Pogatscher (2014)
  18. Pogatscher, S., Leutenegger, D., Hagmann, A., Uggowitzer, P. J. & Löffler, J. F. Characterization of bulk metallic glasses via fast differential scanning calorimetry. Thermochim. Acta 590, 84–90 (2014) . (10.1016/j.tca.2014.06.007) / Thermochim. Acta by S Pogatscher (2014)
  19. Kumar, G., Tang, H. X. & Schroers, J. Nanomoulding with amorphous metals. Nature 457, 868–872 (2009) . (10.1038/nature07718) / Nature by G Kumar (2009)
  20. Kumar, G., Desai, A. & Schroers, J. Bulk metallic glass: the smaller the better. Adv. Mater. 23, 461–476 (2011) . (10.1002/adma.201002148) / Adv. Mater. by G Kumar (2011)
  21. Okamoto, H. & Massalski, T. B. The Au−Si (gold–silicon) system. Bull. Alloy Phase Diagr. 4, 190–198 (1983) . (10.1007/BF02884878) / Bull. Alloy Phase Diagr. by H Okamoto (1983)
  22. Villars, P. Material phases data system (MPDS), Vitznau, Switzerland (ed.). Au-Cu-Si Liquidus projection of ternary phase diagram. Springer Materials http://materials.springer.com/isp/phase-diagram/docs/c_1500096 (2014) .
  23. Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase Transformations in Metals and Alloys Vol. 3, (CRC Press (2009) . (10.1201/9781439883570)
  24. Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1705 (1957) . (10.1021/ac60131a045) / Anal. Chem. by HE Kissinger (1957)
  25. Mittemeijer, E. J. Analysis of the kinetics of phase transformations. J. Mater. Sci. 27, 3977–3987 (1992) . (10.1007/BF01105093) / J. Mater. Sci. by EJ Mittemeijer (1992)
  26. Schawe, J. E. K., Hütter, T., Heitz, C., Alig, I. & Lellinger, D. Stochastic temperature modulation: a new technique in temperature-modulated DSC. Thermochim. Acta 446, 147–155 (2006) . (10.1016/j.tca.2006.01.031) / Thermochim. Acta by JEK Schawe (2006)
  27. Glade, S. C. et al. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87, 7242–7248 (2000) . (10.1063/1.372975) / J. Appl. Phys. by SC Glade (2000)
  28. Fan, G. J., Löffler, J. F., Wunderlich, R. K. & Fecht, H. J. Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20 . Acta Mater. 52, 667–674 (2004) . (10.1016/j.actamat.2003.10.003) / Acta Mater. by GJ Fan (2004)
  29. Suryanarayana, C. & Inoue, A. in Bulk Metallic Glasses 187–264CRC Press (2010) . (10.1201/9781420085976)
  30. Marlaud, T., Deschamps, A., Bley, F., Lefebvre, W. & Baroux, B. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 58, 4814–4826 (2010) . (10.1016/j.actamat.2010.05.017) / Acta Mater. by T Marlaud (2010)
  31. Jung, H. Y. et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study. Mater. Des 86, 703–708 (2015) . (10.1016/j.matdes.2015.07.145) / Mater. Des by HY Jung (2015)
Dates
Type When
Created 9 years, 3 months ago (April 22, 2016, 6:41 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:33 a.m.)
Indexed 18 minutes ago (Aug. 21, 2025, 2:55 a.m.)
Issued 9 years, 3 months ago (April 22, 2016)
Published 9 years, 3 months ago (April 22, 2016)
Published Online 9 years, 3 months ago (April 22, 2016)
Funders 0

None

@article{Pogatscher_2016, title={Solid–solid phase transitions via melting in metals}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11113}, DOI={10.1038/ncomms11113}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Pogatscher, S. and Leutenegger, D. and Schawe, J. E. K. and Uggowitzer, P. J. and Löffler, J. F.}, year={2016}, month=apr }