Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe ability to exfoliate layered materials down to the single layer limit has presented the opportunity to understand how a gradual reduction in dimensionality affects the properties of bulk materials. Here we use this top–down approach to address the problem of superconductivity in the two-dimensional limit. The transport properties of electronic devices based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly, we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers are thinned down. In addition, we propose a tight-binding model, which allows us to attribute this phenomenon to an enhancement of the effective electron–phonon coupling constant. This work provides evidence that reducing the dimensionality can strengthen superconductivity as opposed to the weakening effect that has been reported in other 2D materials so far.

Bibliography

Navarro-Moratalla, E., Island, J. O., Mañas-Valero, S., Pinilla-Cienfuegos, E., Castellanos-Gomez, A., Quereda, J., Rubio-Bollinger, G., Chirolli, L., Silva-Guillén, J. A., Agraït, N., Steele, G. A., Guinea, F., van der Zant, H. S. J., & Coronado, E. (2016). Enhanced superconductivity in atomically thin TaS2. Nature Communications, 7(1).

Authors 14
  1. Efrén Navarro-Moratalla (first)
  2. Joshua O. Island (additional)
  3. Samuel Mañas-Valero (additional)
  4. Elena Pinilla-Cienfuegos (additional)
  5. Andres Castellanos-Gomez (additional)
  6. Jorge Quereda (additional)
  7. Gabino Rubio-Bollinger (additional)
  8. Luca Chirolli (additional)
  9. Jose Angel Silva-Guillén (additional)
  10. Nicolás Agraït (additional)
  11. Gary A. Steele (additional)
  12. Francisco Guinea (additional)
  13. Herre S. J. van der Zant (additional)
  14. Eugenio Coronado (additional)
References 66 Referenced 340
  1. Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979). (10.1103/PhysRevLett.42.1165) / Phys. Rev. Lett. by MR Beasley (1979)
  2. Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989). (10.1103/PhysRevLett.62.2180) / Phys. Rev. Lett. by DB Haviland (1989)
  3. Yazdani, A. & Kapitulnik, A. Superconducting-insulating transition in two-dimensional α-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995). (10.1103/PhysRevLett.74.3037) / Phys. Rev. Lett. by A Yazdani (1995)
  4. Goldman, A. M. & Markovic, N. Superconductor-insulator transitions in the two-dimensional limit. Phys. Today 11, 39–44 (1998). (10.1063/1.882069) / Phys. Today by AM Goldman (1998)
  5. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004). (10.1126/science.1105130) / Science by Y Guo (2004)
  6. Hermele, M., Refael, G., Fisher, M. P. A. & Goldbart, P. M. Fate of the Josephson effect in thin-film superconductors. Nat. Phys 1, 117–121 (2005). (10.1038/nphys154) / Nat. Phys by M Hermele (2005)
  7. Qin, S., Kim, J., Niu, Q. & Shih, C. K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009). (10.1126/science.1170775) / Science by S Qin (2009)
  8. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nat. Phys. 6, 104–108 (2010). (10.1038/nphys1499) / Nat. Phys. by T Zhang (2010)
  9. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  10. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nat. Nanotechnol. by CR Dean (2010)
  11. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007). (10.1038/nmat2003) / Nat. Mater. by SY Zhou (2007)
  12. Romero-Bermúdez, A. & García-García, A. M. Size effects in superconducting thin films coupled to a substrate. Phys. Rev. B 89, 064508 (2014). (10.1103/PhysRevB.89.064508) / Phys. Rev. B by A Romero-Bermúdez (2014)
  13. Profeta, G., Calandra, M. & Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys. 8, 131–134 (2012). (10.1038/nphys2181) / Nat. Phys. by G Profeta (2012)
  14. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012). (10.1038/nphys2208) / Nat. Phys. by R Nandkishore (2012)
  15. Uesugi, E., Goto, H., Eguchi, R., Fujiwara, A. & Kubozono, Y. Electric double-layer capacitance between an ionic liquid and few-layer graphene. Sci. Rep. 3, 1595 (2013). (10.1038/srep01595) / Sci. Rep. by E Uesugi (2013)
  16. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969). (10.1080/00018736900101307) / Adv. Phys. by JA Wilson (1969)
  17. Friend, R. & Yoffe, A. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987). (10.1080/00018738700101951) / Adv. Phys. by R Friend (1987)
  18. Cunningham, G. et al. Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6, 3468–3480 (2012). (10.1021/nn300503e) / ACS Nano by G Cunningham (2012)
  19. Coronado, E., Martí-Gastaldo, C., Navarro-Moratalla, E., Ribera, A., Blundell, S. & Baker, P. Coexistence of superconductivity and magnetism by chemical design. Nat. Chem. 2, 1031–1036 (2010). (10.1038/nchem.898) / Nat. Chem. by E Coronado (2010)
  20. Coronado, E., Martí-Gastaldo, C., Navarro-Moratalla, E., Burzurí, E., Camón, A. & Luis, F. Hybrid magnetic/superconducting materials obtained by insertion of a single-molecule magnet into TaS2 layers. Adv. Mater. 23, 5021–5026 (2011). (10.1002/adma.201102730) / Adv. Mater. by E Coronado (2011)
  21. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  22. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2005). (10.1038/nmat1532) / Nat. Mater. by MA Meitl (2005)
  23. Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010). (10.1126/science.1184167) / Science by C Lee (2010)
  24. Mak, K., Lee, C., Hone, J., Shan, J. & Heinz, T. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by K Mak (2010)
  25. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  26. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007). (10.1126/science.1136494) / Science by C Chiritescu (2007)
  27. Frindt, R. Superconductivity in ultrathin NbSe2 Layers. Phys. Rev. Lett. 28, 299–301 (1972). (10.1103/PhysRevLett.28.299) / Phys. Rev. Lett. by R Frindt (1972)
  28. Staley, N., Wu, J., Eklund, P., Liu, Y., Li, L. & Xu, Z. Electric field effect on superconductivity in atomically thin flakes of NbSe2 . Phys. Rev. B 80, 184505 (2009). (10.1103/PhysRevB.80.184505) / Phys. Rev. B by N Staley (2009)
  29. El-Bana, M. S., Wolverson, D., Russo, S., Balakrishnan, G., Paul, D. M. & Bending, S. J. Superconductivity in two-dimensional NbSe2 field effect transistors. Superconductor Sci. Technol. 26, 125020 (2013). (10.1088/0953-2048/26/12/125020) / Superconductor Sci. Technol. by MS El-Bana (2013)
  30. Li, Q., Si, W. & Dimitrov, I. K. Films of iron chalcogenide superconductors. Rep. Prog. Phys 74, 124510 (2011). (10.1088/0034-4885/74/12/124510) / Rep. Prog. Phys by Q Li (2011)
  31. Liu, D. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3, 931–937 (2012). (10.1038/ncomms1946) / Nat. Commun. by D Liu (2012)
  32. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013). (10.1038/nmat3648) / Nat. Mater. by S He (2013)
  33. Yu, R., Goswami, P., Nikolic, P., Zhu, J.-X. & Si, Q. Superconductivity at the border of electron localization and itinerancy. Nat. Commun. 4, 2783 (2013). (10.1038/ncomms3783) / Nat. Commun. by R Yu (2013)
  34. Cao, Y. et al. Quality heterostructures from two dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015). (10.1021/acs.nanolett.5b00648) / Nano Lett. by Y Cao (2015)
  35. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotechnol 10, 1–6 (2015). (10.1038/nnano.2015.143) / Nat. Nanotechnol by X Xi (2015)
  36. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015). (10.1038/nphys3538) / Nat. Phys. by X Xi (2015)
  37. Tsen, A. W. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys doi:10.1038/nphys3579 (2015). (10.1038/nphys3579)
  38. Jellinek, F. The system tantalum-sulfur. J. Less-Common Metals 4, 9–15 (1962). (10.1016/0022-5088(62)90053-X) / J. Less-Common Metals by F Jellinek (1962)
  39. Castro Neto, A. H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. Phys. Rev. Lett. 86, 4382–4385 (2001). (10.1103/PhysRevLett.86.4382) / Phys. Rev. Lett. by AH Castro Neto (2001)
  40. Guillamón, I. et al. Chiral charge order in the superconductor 2H-TaS2 . N. J. Phys. 13, 103020 (2011). (10.1088/1367-2630/13/10/103020) / N. J. Phys. by I Guillamón (2011)
  41. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014). (10.1126/science.1241591) / Science by L Stojchevska (2014)
  42. Galvis, J. A. et al. Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by scanning tunneling spectroscopy. Phys. Rev. B 89, 224512 (2014). (10.1103/PhysRevB.89.224512) / Phys. Rev. B by JA Galvis (2014)
  43. Ayari, A., Cobas, E., Ogundadegbe, O. & Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007). (10.1063/1.2407388) / J. Appl. Phys. by A Ayari (2007)
  44. Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements Elsevier Butterworth-Heinemann (1997).
  45. Navarro-Moratalla, E. Two-Dimensional Materials: from Hybrid Magnetic Multilayers to Superconducting Single Layers PhD thesis Universitat de Valencia (2013).
  46. Navarro-Moratalla, E., Pinilla-Cienfuegos, E. & Coronado, E. Método y sistema de exfoliación micromecánica por vía seca de materiales laminares bidimensionales. Spanish Patent number P201300252 (2013).
  47. Garoche, P., Manuel, P., Veyssie, J. J. & Molinié, P. Dynamic measurements of the low-temperature specific heat of 2H—TaS2 single crystals in magnetic fields. J Low Temp. Phys. 30, 323–336 (1978). (10.1007/BF00114956) / J Low Temp. Phys. by P Garoche (1978)
  48. Gurevich, A. V. & Mints, R. G. Self-heating in normal metals and superconductors. Rev. Modern Phys. 59, 941–999 (1987). (10.1103/RevModPhys.59.941) / Rev. Modern Phys. by AV Gurevich (1987)
  49. Vicent, J., Hillenius, S. & Coleman, R. Critical-field enhancement and reduced dimensionality in superconducting layer compounds. Phys. Rev. Lett. 44, 892–895 (1980). (10.1103/PhysRevLett.44.892) / Phys. Rev. Lett. by J Vicent (1980)
  50. Di Salvo, F. J., Schwall, R., Geballe, T. H., Gamble, F. R. & Osiecki, J. H. Superconductivity in Layered Compounds with Variable Interlayer Spacings. Phys. Rev. Lett. 27, 310–313 (1971). (10.1103/PhysRevLett.27.310) / Phys. Rev. Lett. by FJ Di Salvo (1971)
  51. Kang, L. et al. Suppression of superconductivity in epitaxial NbN ultrathin films. J. Appl. Phys. 109, 033908 (2011). (10.1063/1.3518037) / J. Appl. Phys. by L Kang (2011)
  52. Wagner, K. E. et al. Tuning the charge density wave and superconductivity in CuxTaS2 . Phys. Rev. B 78, 104520 (2008). (10.1103/PhysRevB.78.104520) / Phys. Rev. B by KE Wagner (2008)
  53. Hangyo, M., Shin-Ichi, N. & Akiyoshi, M. Raman spectroscopic studies of MX2-type layered compounds. Ferroelectrics 52, 151–159 (1983). (10.1080/00150198308208248) / Ferroelectrics by M Hangyo (1983)
  54. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). (10.1038/nature04235) / Nature by Y Zhang (2005)
  55. Naito, M. & Tanaka, S. Electrical transport properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2 . J. Phys. Soc. Jpn 51, 219–227 (1982). (10.1143/JPSJ.51.219) / J. Phys. Soc. Jpn by M Naito (1982)
  56. Biberacher, W., Lerf, A., Buheitel, F., Butz, T. & Hubler, A. On the preparation and characterization of ‘NaOH.TaS2’. Mater. Res. Bull. 17, 633–640 (1982). (10.1016/0025-5408(82)90046-0) / Mater. Res. Bull. by W Biberacher (1982)
  57. Feng, Y. et al. Order parameter fluctuations at a buried quantum critical point. Proc. Natl Acad. Sci. USA 109, 7224–7229 (2012). (10.1073/pnas.1202434109) / Proc. Natl Acad. Sci. USA by Y Feng (2012)
  58. Anderson, P. W. & Morel, P. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev 125, 1263–1271 (1962). (10.1103/PhysRev.125.1517) / Phys. Rev by PW Anderson (1962)
  59. Taniguchi, K., Matsumoto, A., Shimotani, H. & Takagi, H. Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2 . Appl. Phys. Lett. 101, 042603 (2012). (10.1063/1.4740268) / Appl. Phys. Lett. by K Taniguchi (2012)
  60. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193 (2012). (10.1126/science.1228006) / Science by JT Ye (2012)
  61. Roldan, R., Cappelluti, E. & Guinea, F. Interactions and superconductivity in heavily doped MoS2 . Phys. Rev. B 88, 054515 (2013). (10.1103/PhysRevB.88.054515) / Phys. Rev. B by R Roldan (2013)
  62. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002). (10.1088/0953-8984/14/11/302) / J. Phys. Condens. Matter. by JM Soler (2002)
  63. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  64. Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A. & Soler, J. M. Linear-scaling ab-initio calculations for large and complex systems. Phys. Stat. Sol. (b) 215, 809–817 (1999). (10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0) / Phys. Stat. Sol. (b) by E Artacho (1999)
  65. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
  66. Meetsma, A., Wiegers, G. A., Haange, R. J. & de Boer, J. L. Structure of 2H-TaS2 . Acta Crystallogr. C: Crystal Struct. Commun. 46, 1598–1599 (1990). (10.1107/S0108270190000014) / Acta Crystallogr. C: Crystal Struct. Commun. by A Meetsma (1990)
Dates
Type When
Created 9 years, 5 months ago (March 17, 2016, 6:06 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:40 a.m.)
Indexed 20 minutes ago (Aug. 21, 2025, 6:32 a.m.)
Issued 9 years, 5 months ago (March 17, 2016)
Published 9 years, 5 months ago (March 17, 2016)
Published Online 9 years, 5 months ago (March 17, 2016)
Funders 0

None

@article{Navarro_Moratalla_2016, title={Enhanced superconductivity in atomically thin TaS2}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms11043}, DOI={10.1038/ncomms11043}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Navarro-Moratalla, Efrén and Island, Joshua O. and Mañas-Valero, Samuel and Pinilla-Cienfuegos, Elena and Castellanos-Gomez, Andres and Quereda, Jorge and Rubio-Bollinger, Gabino and Chirolli, Luca and Silva-Guillén, Jose Angel and Agraït, Nicolás and Steele, Gary A. and Guinea, Francisco and van der Zant, Herre S. J. and Coronado, Eugenio}, year={2016}, month=mar }