Abstract
AbstractLithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.
References
46
Referenced
805
-
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).
(
10.1038/nnano.2007.411
) / Nat. Nanotechnol. by CK Chan (2008) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).
(
10.1038/nmat3191
) / Nat. Mater. by PG Bruce (2012) -
Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).
(
10.1039/C3EE40795K
) / Energy Environ. Sci. by W Xu (2014) -
Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013).
(
10.1039/c3cs60177c
) / Chem. Soc. Rev. by H Kim (2013) -
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).
(
10.1016/S0167-2738(02)00080-2
) / Solid State Ion. by D Aurbach (2002) -
Brissot, C., Rosso, M., Chazalviel, J. N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).
(
10.1016/S0378-7753(98)00242-0
) / J. Power Sources by C Brissot (1999) -
Peled, E. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).
(
10.1149/1.2128859
) / J. Electrochem. Soc. by E Peled (1979) -
Cohen, Y. S., Cohen, Y. & Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000).
(
10.1021/jp002526b
) / J. Phys. Chem. B by YS Cohen (2000) -
Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface-chemistry, surface-morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).
(
10.1149/1.2096425
) / J. Electrochem. Soc. by D Aurbach (1989) -
Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).
(
10.1016/j.elecom.2006.07.037
) / Electrochem. Commun. by L Gireaud (2006) -
Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).
(
10.1038/nmat2764
) / Nat. Mater. by R Bhattacharyya (2010) -
Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).
(
10.1038/nmat3793
) / Nat. Mater. by KJ Harry (2014) -
Chandrashekar, S. et al. Li-7 MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).
(
10.1038/nmat3246
) / Nat. Mater. by S Chandrashekar (2012) -
Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).
(
10.1038/nmat3066
) / Nat. Mater. by N Kamaya (2011) -
Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007).
(
10.1002/anie.200701144
) / Angew. Chem. Int. Ed. by R Murugan (2007) -
Li, J. C., Ma, C., Chi, M. F., Liang, C. D. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, doi:10.1002/aenm.201401408 (2015).
(
10.1002/aenm.201401408
) -
Croce, F., Persi, L., Ronci, F. & Scrosati, B. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ion. 135, 47–52 (2000).
(
10.1016/S0167-2738(00)00329-5
) / Solid State Ion. by F Croce (2000) -
Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).
(
10.1038/nmat3602
) / Nat. Mater. by R Bouchet (2013) -
Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011).
(
10.1016/j.jpowsour.2010.07.073
) / J. Power Sources by KH Kim (2011) -
Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).
(
10.1039/b920012f
) / Chem. Commun. by T Zhang (2010) -
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).
(
10.1021/cr500003w
) / Chem. Rev. by K Xu (2014) -
Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
(
10.1038/ncomms8436
) / Nat. Commun. by W Li (2015) -
Lu, Y. Y., Tu, Z. Y. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by YY Lu (2014) -
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015) -
Suo, L. M., Hu, Y. S., Li, H., Armand, M. & Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).
(
10.1038/ncomms2513
) / Nat. Commun. by LM Suo (2013) -
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).
(
10.1021/ja312241y
) / J. Am. Chem. Soc. by F Ding (2013) -
Umeda, G. A. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011).
(
10.1039/C0JM02305A
) / J. Mater. Chem. by GA Umeda (2011) -
Ishikawa, M., Morita, M. & Matsuda, Y. In situ scanning vibrating electrode technique for lithium metal anodes. J. Power Sources 68, 501–505 (1997).
(
10.1016/S0378-7753(97)02524-X
) / J. Power Sources by M Ishikawa (1997) -
Kang, I. S., Lee, Y. S. & Kim, D. W. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 161, A53–A57 (2014).
(
10.1149/2.029401jes
) / J. Electrochem. Soc. by IS Kang (2014) -
Ji, X. L. et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7, 10–20 (2012).
(
10.1016/j.nantod.2011.11.002
) / Nano Today by XL Ji (2012) -
Ryou, M. H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012).
(
10.1002/aenm.201100687
) / Adv. Energy Mater. by MH Ryou (2012) -
Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).
(
10.1021/acsnano.5b02166
) / ACS Nano by AC Kozen (2015) -
Zheng, G. Y. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotechnol. by GY Zheng (2014) -
Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).
(
10.1021/nl503125u
) / Nano Lett. by K Yan (2014) -
Liang, Z. et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15, 2910–2916 (2015).
(
10.1021/nl5046318
) / Nano Lett. by Z Liang (2015) -
Heine, J. et al. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 4, doi:10.1002/aenm.201300815 (2014).
(
10.1002/aenm.201400406
) -
Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).
(
10.1038/ncomms9058
) / Nat. Commun. by C-P Yang (2015) - Wright, W. W. & Hallden-Abberton, M. in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH Verlag GmbH & Co. KGaA (2000).
-
Fu, Z. W., Huang, F., Zhang, Y., Chu, Y. & Qin, Q. Z. The electrochemical reaction of zinc oxide thin films with lithium. J. Electrochem. Soc. 150, A714–A720 (2003).
(
10.1149/1.1570410
) / J. Electrochem. Soc. by ZW Fu (2003) -
Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006).
(
10.1038/nmat1672
) / Nat. Mater. by L Taberna (2006) -
Grugeon, S. et al. Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 148, A285–A292 (2001).
(
10.1149/1.1353566
) / J. Electrochem. Soc. by S Grugeon (2001) -
Mrsevic, M., Dusselberg, D. & Staudt, C. Synthesis and characterization of a novel carboxyl group containing (co)polyimide with sulfur in the polymer backbone. Beilstein J. Org. Chem. 8, 776–786 (2012).
(
10.3762/bjoc.8.88
) / Beilstein J. Org. Chem. by M Mrsevic (2012) -
Aurbach, D., Youngman, O., Gofer, Y. & Meitav, A. The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions-I. Uncontaminated solutions. Electrochim. Acta 35, 625–638 (1990).
(
10.1016/0013-4686(90)87055-7
) / Electrochim. Acta by D Aurbach (1990) -
Bieker, G., Winter, M. & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).
(
10.1039/C4CP05865H
) / Phys. Chem. Chem. Phys. by G Bieker (2015) -
Kim, J. S., Baek, S. H. & Yoon, W. Y. Electrochemical behavior of compacted lithium powder electrode in Li/V2O5 rechargeable battery. J. Electrochem. Soc. 157, A984–A987 (2010).
(
10.1149/1.3457381
) / J. Electrochem. Soc. by JS Kim (2010)
Dates
Type | When |
---|---|
Created | 9 years, 5 months ago (March 18, 2016, 7:25 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:44 a.m.) |
Indexed | 1 hour, 4 minutes ago (Aug. 21, 2025, 3:49 a.m.) |
Issued | 9 years, 5 months ago (March 18, 2016) |
Published | 9 years, 5 months ago (March 18, 2016) |
Published Online | 9 years, 5 months ago (March 18, 2016) |
@article{Liu_2016, title={Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10992}, DOI={10.1038/ncomms10992}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Liu, Yayuan and Lin, Dingchang and Liang, Zheng and Zhao, Jie and Yan, Kai and Cui, Yi}, year={2016}, month=mar }