Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractLithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm−2 in both carbonate and ether electrolyte. The advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.

Bibliography

Liu, Y., Lin, D., Liang, Z., Zhao, J., Yan, K., & Cui, Y. (2016). Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nature Communications, 7(1).

Authors 6
  1. Yayuan Liu (first)
  2. Dingchang Lin (additional)
  3. Zheng Liang (additional)
  4. Jie Zhao (additional)
  5. Kai Yan (additional)
  6. Yi Cui (additional)
References 46 Referenced 805
  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  2. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). (10.1038/nnano.2007.411) / Nat. Nanotechnol. by CK Chan (2008)
  3. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). (10.1038/nmat3191) / Nat. Mater. by PG Bruce (2012)
  4. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014). (10.1039/C3EE40795K) / Energy Environ. Sci. by W Xu (2014)
  5. Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013). (10.1039/c3cs60177c) / Chem. Soc. Rev. by H Kim (2013)
  6. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002). (10.1016/S0167-2738(02)00080-2) / Solid State Ion. by D Aurbach (2002)
  7. Brissot, C., Rosso, M., Chazalviel, J. N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999). (10.1016/S0378-7753(98)00242-0) / J. Power Sources by C Brissot (1999)
  8. Peled, E. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). (10.1149/1.2128859) / J. Electrochem. Soc. by E Peled (1979)
  9. Cohen, Y. S., Cohen, Y. & Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000). (10.1021/jp002526b) / J. Phys. Chem. B by YS Cohen (2000)
  10. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface-chemistry, surface-morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989). (10.1149/1.2096425) / J. Electrochem. Soc. by D Aurbach (1989)
  11. Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006). (10.1016/j.elecom.2006.07.037) / Electrochem. Commun. by L Gireaud (2006)
  12. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010). (10.1038/nmat2764) / Nat. Mater. by R Bhattacharyya (2010)
  13. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). (10.1038/nmat3793) / Nat. Mater. by KJ Harry (2014)
  14. Chandrashekar, S. et al. Li-7 MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012). (10.1038/nmat3246) / Nat. Mater. by S Chandrashekar (2012)
  15. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). (10.1038/nmat3066) / Nat. Mater. by N Kamaya (2011)
  16. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007). (10.1002/anie.200701144) / Angew. Chem. Int. Ed. by R Murugan (2007)
  17. Li, J. C., Ma, C., Chi, M. F., Liang, C. D. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, doi:10.1002/aenm.201401408 (2015). (10.1002/aenm.201401408)
  18. Croce, F., Persi, L., Ronci, F. & Scrosati, B. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ion. 135, 47–52 (2000). (10.1016/S0167-2738(00)00329-5) / Solid State Ion. by F Croce (2000)
  19. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). (10.1038/nmat3602) / Nat. Mater. by R Bouchet (2013)
  20. Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011). (10.1016/j.jpowsour.2010.07.073) / J. Power Sources by KH Kim (2011)
  21. Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010). (10.1039/b920012f) / Chem. Commun. by T Zhang (2010)
  22. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). (10.1021/cr500003w) / Chem. Rev. by K Xu (2014)
  23. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). (10.1038/ncomms8436) / Nat. Commun. by W Li (2015)
  24. Lu, Y. Y., Tu, Z. Y. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). (10.1038/nmat4041) / Nat. Mater. by YY Lu (2014)
  25. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). (10.1038/ncomms7362) / Nat. Commun. by J Qian (2015)
  26. Suo, L. M., Hu, Y. S., Li, H., Armand, M. & Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). (10.1038/ncomms2513) / Nat. Commun. by LM Suo (2013)
  27. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). (10.1021/ja312241y) / J. Am. Chem. Soc. by F Ding (2013)
  28. Umeda, G. A. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011). (10.1039/C0JM02305A) / J. Mater. Chem. by GA Umeda (2011)
  29. Ishikawa, M., Morita, M. & Matsuda, Y. In situ scanning vibrating electrode technique for lithium metal anodes. J. Power Sources 68, 501–505 (1997). (10.1016/S0378-7753(97)02524-X) / J. Power Sources by M Ishikawa (1997)
  30. Kang, I. S., Lee, Y. S. & Kim, D. W. Improved cycling stability of lithium electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 161, A53–A57 (2014). (10.1149/2.029401jes) / J. Electrochem. Soc. by IS Kang (2014)
  31. Ji, X. L. et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7, 10–20 (2012). (10.1016/j.nantod.2011.11.002) / Nano Today by XL Ji (2012)
  32. Ryou, M. H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012). (10.1002/aenm.201100687) / Adv. Energy Mater. by MH Ryou (2012)
  33. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015). (10.1021/acsnano.5b02166) / ACS Nano by AC Kozen (2015)
  34. Zheng, G. Y. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). (10.1038/nnano.2014.152) / Nat. Nanotechnol. by GY Zheng (2014)
  35. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014). (10.1021/nl503125u) / Nano Lett. by K Yan (2014)
  36. Liang, Z. et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15, 2910–2916 (2015). (10.1021/nl5046318) / Nano Lett. by Z Liang (2015)
  37. Heine, J. et al. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 4, doi:10.1002/aenm.201300815 (2014). (10.1002/aenm.201400406)
  38. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). (10.1038/ncomms9058) / Nat. Commun. by C-P Yang (2015)
  39. Wright, W. W. & Hallden-Abberton, M. in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH Verlag GmbH & Co. KGaA (2000).
  40. Fu, Z. W., Huang, F., Zhang, Y., Chu, Y. & Qin, Q. Z. The electrochemical reaction of zinc oxide thin films with lithium. J. Electrochem. Soc. 150, A714–A720 (2003). (10.1149/1.1570410) / J. Electrochem. Soc. by ZW Fu (2003)
  41. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006). (10.1038/nmat1672) / Nat. Mater. by L Taberna (2006)
  42. Grugeon, S. et al. Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 148, A285–A292 (2001). (10.1149/1.1353566) / J. Electrochem. Soc. by S Grugeon (2001)
  43. Mrsevic, M., Dusselberg, D. & Staudt, C. Synthesis and characterization of a novel carboxyl group containing (co)polyimide with sulfur in the polymer backbone. Beilstein J. Org. Chem. 8, 776–786 (2012). (10.3762/bjoc.8.88) / Beilstein J. Org. Chem. by M Mrsevic (2012)
  44. Aurbach, D., Youngman, O., Gofer, Y. & Meitav, A. The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions-I. Uncontaminated solutions. Electrochim. Acta 35, 625–638 (1990). (10.1016/0013-4686(90)87055-7) / Electrochim. Acta by D Aurbach (1990)
  45. Bieker, G., Winter, M. & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015). (10.1039/C4CP05865H) / Phys. Chem. Chem. Phys. by G Bieker (2015)
  46. Kim, J. S., Baek, S. H. & Yoon, W. Y. Electrochemical behavior of compacted lithium powder electrode in Li/V2O5 rechargeable battery. J. Electrochem. Soc. 157, A984–A987 (2010). (10.1149/1.3457381) / J. Electrochem. Soc. by JS Kim (2010)
Dates
Type When
Created 9 years, 5 months ago (March 18, 2016, 7:25 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:44 a.m.)
Indexed 1 hour, 4 minutes ago (Aug. 21, 2025, 3:49 a.m.)
Issued 9 years, 5 months ago (March 18, 2016)
Published 9 years, 5 months ago (March 18, 2016)
Published Online 9 years, 5 months ago (March 18, 2016)
Funders 0

None

@article{Liu_2016, title={Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10992}, DOI={10.1038/ncomms10992}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Liu, Yayuan and Lin, Dingchang and Liang, Zheng and Zhao, Jie and Yan, Kai and Cui, Yi}, year={2016}, month=mar }