Abstract
AbstractMicroelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures.
Bibliography
Woods, C. R., Withers, F., Zhu, M. J., Cao, Y., Yu, G., Kozikov, A., Ben Shalom, M., Morozov, S. V., van Wijk, M. M., Fasolino, A., Katsnelson, M. I., Watanabe, K., Taniguchi, T., Geim, A. K., Mishchenko, A., & Novoselov, K. S. (2016). Macroscopic self-reorientation of interacting two-dimensional crystals. Nature Communications, 7(1).
Authors
16
- C. R. Woods (first)
- F. Withers (additional)
- M. J. Zhu (additional)
- Y. Cao (additional)
- G. Yu (additional)
- A. Kozikov (additional)
- M. Ben Shalom (additional)
- S. V. Morozov (additional)
- M. M. van Wijk (additional)
- A. Fasolino (additional)
- M. I. Katsnelson (additional)
- K. Watanabe (additional)
- T. Taniguchi (additional)
- A. K. Geim (additional)
- A. Mishchenko (additional)
- K. S. Novoselov (additional)
References
40
Referenced
104
-
Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008).
(
10.1103/PhysRevLett.100.046102
) / Phys. Rev. Lett. by AE Filippov (2008) -
Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).
(
10.1103/PhysRevLett.108.205503
) / Phys. Rev. Lett. by Z Liu (2012) -
Yang, J. R. et al. Observation of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 255504 (2013).
(
10.1103/PhysRevLett.110.255504
) / Phys. Rev. Lett. by JR Yang (2013) -
Novoselov, K. S. Nobel lecture: graphene: materials in the Flatland. Rev. Mod. Phys. 83, 837–849 (2011).
(
10.1103/RevModPhys.83.837
) / Rev. Mod. Phys. by KS Novoselov (2011) -
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
(
10.1038/nature12385
) / Nature by AK Geim (2013) -
Novoselov, K. S. & Neto, A. H. C. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).
(
10.1088/0031-8949/2012/T146/014006
) / Phys. Scr. by KS Novoselov (2012) -
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
(
10.1038/nnano.2010.172
) / Nat. Nanotechnol. by CR Dean (2010) -
Xue, J. M. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).
(
10.1038/nmat2968
) / Nat. Mater. by JM Xue (2011) -
Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).
(
10.1038/nphys2272
) / Nat. Phys. by M Yankowitz (2012) -
Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).
(
10.1038/nphys2954
) / Nat. Phys. by CR Woods (2014) -
van Wijk, M. M., Schuring, A., Katsnelson, M. I. & Fasolino, A. Moire patterns as a probe of interplanar interactions for graphene on h-BN. Phys. Rev. Lett. 113, 135504 (2014).
(
10.1103/PhysRevLett.113.135504
) / Phys. Rev. Lett. by MM van Wijk (2014) -
Song, J. C. W., Shytov, A. V. & Levitov, L. S. Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111, 266801 (2013).
(
10.1103/PhysRevLett.111.266801
) / Phys. Rev. Lett. by JCW Song (2013) -
Slotman, G. J. et al. Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride. Phys. Rev. Lett. 115, 186801 (2015).
(
10.1103/PhysRevLett.115.186801
) / Phys. Rev. Lett. by GJ Slotman (2015) -
Wang, Z. et al. Strong interface-induced spin-orbit interaction in graphene on WS2. Nat. Commun. 6, 8339 (2015).
(
10.1038/ncomms9339
) / Nat. Commun. by Z Wang (2015) -
Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).
(
10.1038/nature12187
) / Nature by LA Ponomarenko (2013) -
Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).
(
10.1038/nature12186
) / Nature by CR Dean (2013) -
Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).
(
10.1126/science.1237240
) / Science by B Hunt (2013) -
Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).
(
10.1126/science.1254966
) / Science by RV Gorbachev (2014) -
Yao, J. J. RF MEMS from a device perspective. J. Micromech. Microengin. 10, R9–R38 (2000).
(
10.1088/0960-1317/10/4/201
) / J. Micromech. Microengin. by JJRF Yao (2000) -
Suzuki, K. Micro electro mechanical systems (MEMS) micro-switches for use in DC, RF, and optical applications. Jpn J. Appl. Phys 41, 4335–4339 (2002).
(
10.1143/JJAP.41.4335
) / Jpn J. Appl. Phys by K Suzuki (2002) -
Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).
(
10.1126/science.289.5479.602
) / Science by J Cumings (2000) -
Kim, S. H., Asay, D. B. & Dugger, M. T. Nanotribology and MEMS. Nano Today 2, 22–29 (2007).
(
10.1016/S1748-0132(07)70140-8
) / Nano Today by SH Kim (2007) -
Hsu, S. M. Nano-lubrication: concept and design. Tribol. Int. 37, 537–545 (2004).
(
10.1016/j.triboint.2003.12.002
) / Tribol. Int. by SM Hsu (2004) -
Hedgeland, H. et al. Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nat. Phys. 5, 561–564 (2009).
(
10.1038/nphys1335
) / Nat. Phys. by H Hedgeland (2009) -
Guerra, R., Tartaglino, U., Vanossi, A. & Tosatti, E. Ballistic nanofriction. Nat. Mater. 9, 634–637 (2010).
(
10.1038/nmat2798
) / Nat. Mater. by R Guerra (2010) -
Delrio, F. W. et al. The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005).
(
10.1038/nmat1431
) / Nat. Mater. by FW Delrio (2005) -
Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).
(
10.1038/nnano.2014.187
) / Nat. Nanotechnol. by A Mishchenko (2014) -
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
(
10.1126/science.1244358
) / Science by L Wang (2013) -
Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).
(
10.1021/nl5006542
) / Nano Lett. by AV Kretinin (2014) -
Eckmann, A. et al. Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013).
(
10.1021/nl402679b
) / Nano Lett. by A Eckmann (2013) - Pittenger, B. B., Erina, N. & Su, C. in Application Note #128 Bruker (2012).
-
Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).
(
10.1126/science.aad2102
) / Science by L Wang (2015) -
Gallagher, P. et al. Switchable friction enabled by nanoscale self-assembly on graphene. Nat. Commun. 7, 10745 (2016).
(
10.1038/ncomms10745
) / Nat. Commun. by P Gallagher (2016) -
Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).
(
10.1038/nmat4205
) / Nat. Mater. by F Withers (2015) -
Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).
(
10.1088/0953-8984/14/4/312
) / J. Phys. Condens. Matter by DW Brenner (2002) -
Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).
(
10.1006/jcph.1995.1039
) / J. Comput. Phys. by S Plimpton (1995) -
Kolmogorov, A. N. & Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).
(
10.1103/PhysRevB.71.235415
) / Phys. Rev. B by AN Kolmogorov (2005) -
Sachs, B., Wehling, T. O., Katsnelson, M. I. & Lichtenstein, A. I. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys. Rev. B 84, 195414 (2011).
(
10.1103/PhysRevB.84.195414
) / Phys. Rev. B by B Sachs (2011) -
Bokdam, M., Amlaki, T., Brocks, G. & Kelly, P. J. Band gaps in incommensurable graphene on hexagonal boron nitride. Phys. Rev. B 89, 201404 (2014).
(
10.1103/PhysRevB.89.201404
) / Phys. Rev. B by M Bokdam (2014) -
Bitzek, E., Koskinen, P., Gahler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).
(
10.1103/PhysRevLett.97.170201
) / Phys. Rev. Lett. by E Bitzek (2006)
Dates
Type | When |
---|---|
Created | 9 years, 5 months ago (March 10, 2016, 5:29 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:47 a.m.) |
Indexed | 5 days, 13 hours ago (Aug. 23, 2025, 9:17 p.m.) |
Issued | 9 years, 5 months ago (March 10, 2016) |
Published | 9 years, 5 months ago (March 10, 2016) |
Published Online | 9 years, 5 months ago (March 10, 2016) |
@article{Woods_2016, title={Macroscopic self-reorientation of interacting two-dimensional crystals}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10800}, DOI={10.1038/ncomms10800}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Woods, C. R. and Withers, F. and Zhu, M. J. and Cao, Y. and Yu, G. and Kozikov, A. and Ben Shalom, M. and Morozov, S. V. and van Wijk, M. M. and Fasolino, A. and Katsnelson, M. I. and Watanabe, K. and Taniguchi, T. and Geim, A. K. and Mishchenko, A. and Novoselov, K. S.}, year={2016}, month=mar }