Abstract
AbstractThermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.
Bibliography
Illig, S., Eggeman, A. S., Troisi, A., Jiang, L., Warwick, C., Nikolka, M., Schweicher, G., Yeates, S. G., Henri Geerts, Y., Anthony, J. E., & Sirringhaus, H. (2016). Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nature Communications, 7(1).
Authors
11
- Steffen Illig (first)
- Alexander S. Eggeman (additional)
- Alessandro Troisi (additional)
- Lang Jiang (additional)
- Chris Warwick (additional)
- Mark Nikolka (additional)
- Guillaume Schweicher (additional)
- Stephen G. Yeates (additional)
- Yves Henri Geerts (additional)
- John E. Anthony (additional)
- Henning Sirringhaus (additional)
References
36
Referenced
178
-
Chang, J.-F. et al. Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors. Phys. Rev. Lett. 107, 066601 (2011).
(
10.1103/PhysRevLett.107.066601
) / Phys. Rev. Lett. by J-F Chang (2011) -
Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).
(
10.1021/cr050140x
) / Chem. Rev. by V Coropceanu (2007) -
Giri, G. et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011).
(
10.1038/nature10683
) / Nature by G Giri (2011) - Kalb, W. L., Haas, S., Krellner, C., Mathis, T. & Batlogg, B. Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals. Phys. Rev. B 81, 1–13 (2010). / Phys. Rev. B by WL Kalb (2010)
-
Veres, J., Ogier, S. D., Leeming, S. W. & Cupertino., D. C. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).
(
10.1002/adfm.200390030
) / Adv. Funct. Mater. by J Veres (2003) -
Troisi, A., Orlandi, G. & Anthony, J. E. Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units. Chem. Mater. 17, 5024–5031 (2005).
(
10.1021/cm051150h
) / Chem. Mater. by A Troisi (2005) -
Ciuchi, S. & Fratini, S. Electronic transport and quantum localization effects in organic semiconductors. Phys. Rev. B 86, 245201 (2012).
(
10.1103/PhysRevB.86.245201
) / Phys. Rev. B by S Ciuchi (2012) -
Minder, N. A. et al. Tailoring the molecular structure to suppress extrinsic disorder in organic transistors. Adv. Mater. 26, 1254–1260 (2014).
(
10.1002/adma.201304130
) / Adv. Mater. by NA Minder (2014) -
Sirringhaus, H., Sakanoue, T. & Chang, J.-F. Charge-transport physics of high-mobility molecular semiconductors. Phys. Stat. Solid. 249, 1655–1676 (2012).
(
10.1002/pssb.201248143
) / Phys. Stat. Solid. by H Sirringhaus (2012) -
Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. doi:10.1002/adfm.201502386 (2016).
(
10.1002/adfm.201502386
) -
de Boer, R. W. I., Gershenson, M. E., Morpurgo, A. F. & Podzorov, V. Organic single-crystal field-effect transistors. Phys. Stat. Sol (a) 201, No. 6, 1302–1331 (2004).
(
10.1002/pssa.200404336
) / Phys. Stat. Sol by RWI de Boer (2004) -
Troisi, A. Dynamic disorder in molecular semiconductors: charge transport in two dimensions. J. Chem. Phys. 134, 034702 (2011).
(
10.1063/1.3524314
) / J. Chem. Phys. by A Troisi (2011) -
Eggeman, A. S., Illig, S., Troisi, A., Sirringhaus, H. & Midgely, P. Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. Nat. Mater. 12, 1045–1049 (2013).
(
10.1038/nmat3710
) / Nat. Mater. by AS Eggeman (2013) -
Troisi, A. & Orlandi, G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. 110, 4065–4070 (2006).
(
10.1021/jp055432g
) / J. Phys. Chem. by A Troisi (2006) -
Uemura, T. et al. On the extraction of charge carrier mobility in high-mobility organic transistors. Adv. Mater. 28, 151–155 (2015).
(
10.1002/adma.201503133
) / Adv. Mater. by T Uemura (2015) -
Uemura, T. et al. Band-like transport in solution-crystallized organic transistors. Curr. Appl. Phys. 12, 1–5 (2012).
(
10.1016/j.cap.2012.05.046
) / Curr. Appl. Phys. by T Uemura (2012) -
Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).
(
10.1038/nature14453
) / Nature by DA Keen (2015) - Williams, D. B. & Carter, B. C. Transmission Electron Microscopy - A Textbook for Materials Science. 14Springer ISBN 978-0-387-76501-3).
- Pelant, I. & Valenta, J. Luminescence Spectroscopy of Semiconductors. 115Oxford Univ. Press ISBN: 978-0-19-958833-6 (2012).
-
Payne, M. M., Parkin, S. R., Anthony, J. E., Kuo, C. C. & Jackson, T. N. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs. J. Am. Chem. Soc. 127, 4986–4987 (2005).
(
10.1021/ja042353u
) / J. Am. Chem. Soc. by MM Payne (2005) -
Subramanian, S. et al. Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J. Am. Chem. Soc. 130, 2706–2707 (2008).
(
10.1021/ja073235k
) / J. Am. Chem. Soc. by S Subramanian (2008) -
Wang, Y., Parkin, S. R., Gierschner, J. & Watson, M. D. Highly fluorinated benzobisbenzothiophenes. Org. Lett. 10, 3307–3310 (2008).
(
10.1021/ol8003468
) / Org. Lett. by Y Wang (2008) -
Laquindanum, J. G., Katz, H. E. & Lovinger, A. J. Synthesis, morphology, and field-effect mobility of anthradithiophenes. J. Am. Chem. Soc. 120, 664–672 (1998).
(
10.1021/ja9728381
) / J. Am. Chem. Soc. by JG Laquindanum (1998) -
Payne, M. M., Odom, S. A., Parkin, S. R. & Anthony, J. E. Stable, crystalline acenedithiophenes with up to seven linearly-fused rings. Org. Lett. 6, 3325–3328 (2004).
(
10.1021/ol048686d
) / Org. Lett. by MM Payne (2004) -
Llorente, G. R. et al. High performance, acene-based organic thin film transistors. Chem. Commun. 3059–3061 (2009).
(
10.1039/b901448a
) - Citation of TMTES-P crystal structure from the Cambridge Structural Database: Reference CCDC 1400822 (2015).
-
da Silva Filho, D. A., Kim, E.-G. & Bredas, J.-L. Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072–1074 (2005).
(
10.1002/adma.200401866
) / Adv. Mater. by DA da Silva Filho (2005) -
Jurchescu, O. D., Meetsma, A. & Palstra, T. T. M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallogr. Sect. B 62, (Part 2): 330–334 (2006).
(
10.1107/S0108768106003053
) / Acta Crystallogr. Sect. B by OD Jurchescu (2006) -
Woodley, S. M. & Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 7, 937–946 (2008).
(
10.1038/nmat2321
) / Nat. Mater. by SM Woodley (2008) -
Ebata, H. et al. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 129, 15732–15733 (2007).
(
10.1021/ja074841i
) / J. Am. Chem. Soc. by H Ebata (2007) -
Loane, R. F., Xu, P. & Silcox, J. Thermal vibrations in convergent-beam electron diffraction. Acta Crystalllogr. A47, 267–278 (1991).
(
10.1107/S0108767391000375
) / Acta Crystalllogr. by RF Loane (1991) - Illig, S. Thermal diffuse electron scattering with CUDA. GitHub Repository (2015) https://github.com/Steffen-Illig.
- Reimer, L. & Kohl, H. Springer Series in Optical Science 5th edn 36, Springer ISBN: 978-0-387-40093-8 (2008).
-
Takimiya, K., Shinamura, S., Osaka, I. & Miyazaki, E. Thienoacene-based organic semiconductors. Adv. Mater. 23, 4347–4370 (2011).
(
10.1002/adma.201102007
) / Adv. Mater. by K Takimiya (2011) -
Kiyoshi, M. et al. Microscopic hole-transfer efficiency in organic thin-film transistors studied with charge-modulation spectroscopy. Phys. Rev. B 91, (2015).
(
10.1103/PhysRevB.91.195306
) -
Schweicher, G. et al. Bulky end-capped [1]benzothieno[3,2- b ]benzothiophenes: reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater. 27, 3066–3072 (2015).
(
10.1002/adma.201500322
) / Adv. Mater. by G Schweicher (2015)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 22, 2016, 5:17 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:52 a.m.) |
Indexed | 5 days, 21 hours ago (Aug. 19, 2025, 5:57 a.m.) |
Issued | 9 years, 6 months ago (Feb. 22, 2016) |
Published | 9 years, 6 months ago (Feb. 22, 2016) |
Published Online | 9 years, 6 months ago (Feb. 22, 2016) |
@article{Illig_2016, title={Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10736}, DOI={10.1038/ncomms10736}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Illig, Steffen and Eggeman, Alexander S. and Troisi, Alessandro and Jiang, Lang and Warwick, Chris and Nikolka, Mark and Schweicher, Guillaume and Yeates, Stephen G. and Henri Geerts, Yves and Anthony, John E. and Sirringhaus, Henning}, year={2016}, month=feb }