Abstract
AbstractThe host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.
Bibliography
Liu, C., Perilla, J. R., Ning, J., Lu, M., Hou, G., Ramalho, R., Himes, B. A., Zhao, G., Bedwell, G. J., Byeon, I.-J., Ahn, J., Gronenborn, A. M., Prevelige, P. E., Rousso, I., Aiken, C., Polenova, T., Schulten, K., & Zhang, P. (2016). Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nature Communications, 7(1).
Authors
18
- Chuang Liu (first)
- Juan R. Perilla (additional)
- Jiying Ning (additional)
- Manman Lu (additional)
- Guangjin Hou (additional)
- Ruben Ramalho (additional)
- Benjamin A. Himes (additional)
- Gongpu Zhao (additional)
- Gregory J. Bedwell (additional)
- In-Ja Byeon (additional)
- Jinwoo Ahn (additional)
- Angela M. Gronenborn (additional)
- Peter E. Prevelige (additional)
- Itay Rousso (additional)
- Christopher Aiken (additional)
- Tatyana Polenova (additional)
- Klaus Schulten (additional)
- Peijun Zhang (additional)
References
70
Referenced
128
-
Forshey, B. M., von Schwedler, U., Sundquist, W. I. & Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677 (2002).
(
10.1128/JVI.76.11.5667-5677.2002
) / J. Virol. by BM Forshey (2002) -
Rihn, S. J. et al. Extreme genetic fragility of the HIV-1 capsid. PLoS Pathog. 9, e1003461 (2013).
(
10.1371/journal.ppat.1003461
) / PLoS Pathog. by SJ Rihn (2013) -
von Schwedler, U. K., Stray, K. M., Garrus, J. E. & Sundquist, W. I. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450 (2003).
(
10.1128/JVI.77.9.5439-5450.2003
) / J. Virol. by UK von Schwedler (2003) -
Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503, 402–405 (2013).
(
10.1038/nature12769
) / Nature by J Rasaiyaah (2013) -
Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39, 1132–1142 (2013).
(
10.1016/j.immuni.2013.11.002
) / Immunity by X Lahaye (2013) -
Shah, V. B. et al. The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. J. Virol. 87, 422–432 (2013).
(
10.1128/JVI.07177-11
) / J. Virol. by VB Shah (2013) -
Matreyek, K. A. & Engelman, A. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J. Virol. 85, 7818–7827 (2011).
(
10.1128/JVI.00325-11
) / J. Virol. by KA Matreyek (2011) -
Schaller, T. et al. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog. 7, e1002439 (2011).
(
10.1371/journal.ppat.1002439
) / PLoS Pathog. by T Schaller (2011) -
Lee, K. et al. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7, 221–233 (2010).
(
10.1016/j.chom.2010.02.007
) / Cell Host Microbe by K Lee (2010) -
Colgan, J., Yuan, H. E., Franke, E. K. & Luban, J. Binding of the human immunodeficiency virus type 1 Gag polyprotein to cyclophilin A is mediated by the central region of capsid and requires Gag dimerization. J. Virol. 70, 4299–4310 (1996).
(
10.1128/jvi.70.7.4299-4310.1996
) / J. Virol. by J Colgan (1996) -
Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).
(
10.1016/S0092-8674(00)81823-1
) / Cell by TR Gamble (1996) -
Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).
(
10.1016/0092-8674(93)90637-6
) / Cell by J Luban (1993) -
Franke, E. K., Yuan, H. E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).
(
10.1038/372359a0
) / Nature by EK Franke (1994) -
Sokolskaja, E., Sayah, D. M. & Luban, J. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J. Virol. 78, 12800–12808 (2004).
(
10.1128/JVI.78.23.12800-12808.2004
) / J. Virol. by E Sokolskaja (2004) -
Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).
(
10.1038/372363a0
) / Nature by M Thali (1994) -
Nisole, S., Lynch, C., Stoye, J. P. & Yap, M. W. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc. Natl Acad. Sci. USA 101, 13324–13328 (2004).
(
10.1073/pnas.0404640101
) / Proc. Natl Acad. Sci. USA by S Nisole (2004) -
Sayah, D. M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004).
(
10.1038/nature02777
) / Nature by DM Sayah (2004) -
Li, Y., Kar, A. K. & Sodroski, J. Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. J. Virol. 83, 10951–10962 (2009).
(
10.1128/JVI.00682-09
) / J. Virol. by Y Li (2009) -
Ikeda, Y., Ylinen, L. M., Kahar-Bador, M. & Towers, G. J. Influence of gag on human immunodeficiency virus type 1 species-specific tropism. J. Virol. 78, 11816–11822 (2004).
(
10.1128/JVI.78.21.11816-11822.2004
) / J. Virol. by Y Ikeda (2004) -
Song, C. & Aiken, C. Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant. J. Virol. 81, 11946–11956 (2007).
(
10.1128/JVI.00620-07
) / J. Virol. by C Song (2007) -
Berthoux, L., Sebastian, S., Sokolskaja, E. & Luban, J. Cyclophilin A is required for TRIM5{alpha}-mediated resistance to HIV-1 in Old World monkey cells. Proc. Natl Acad. Sci. USA 102, 14849–14853 (2005).
(
10.1073/pnas.0505659102
) / Proc. Natl Acad. Sci. USA by L Berthoux (2005) -
Towers, G. J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat. Med. 9, 1138–1143 (2003).
(
10.1038/nm910
) / Nat. Med. by GJ Towers (2003) -
Stremlau, M., Song, B., Javanbakht, H., Perron, M. & Sodroski, J. Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology 351, 112–120 (2006).
(
10.1016/j.virol.2006.03.015
) / Virology by M Stremlau (2006) -
De Iaco, A. & Luban, J. Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology 11, 11 (2014).
(
10.1186/1742-4690-11-11
) / Retrovirology by A De Iaco (2014) -
Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).
(
10.1006/jmbi.1997.1051
) / J. Mol. Biol. by S Yoo (1997) -
Braaten, D. & Luban, J. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J. 20, 1300–1309 (2001).
(
10.1093/emboj/20.6.1300
) / EMBO J. by D Braaten (2001) -
Aiken, C. Mechanistic independence of Nef and cyclophilin A enhancement of human immunodeficiency virus type 1 infectivity. Virology 248, 139–147 (1998).
(
10.1006/viro.1998.9254
) / Virology by C Aiken (1998) -
Grattinger, M. et al. In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A. Virology 257, 247–260 (1999).
(
10.1006/viro.1999.9668
) / Virology by M Grattinger (1999) -
Zhang, P., Meng, X. & Zhao, G. Tubular crystals and helical arrays: structural determination of HIV-1 capsid assemblies using iterative helical real-space reconstruction. Methods Mol. Biol. 955, 381–399 (2013).
(
10.1007/978-1-62703-176-9_21
) / Methods Mol. Biol. by P Zhang (2013) -
Zhao, G. et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013).
(
10.1038/nature12162
) / Nature by G Zhao (2013) -
Ke, H. et al. Crystal structures of cyclophilin A complexed with cyclosporin A and N-methyl-4-[(E)-2-butenyl]-4,4-dimethylthreonine cyclosporin A. Structure 2, 33–44 (1994).
(
10.1016/S0969-2126(00)00006-X
) / Structure by H Ke (1994) -
Han, Y. et al. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics, and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 135, 17793–17803 (2013).
(
10.1021/ja406907h
) / J. Am. Chem. Soc. by Y Han (2013) -
Lu, M. et al. Dynamic allostery governs cyclophilin A-HIV capsid interplay. Proc. Natl Acad. Sci. USA 112, 14617–14622 (2015).
(
10.1073/pnas.1516920112
) / Proc. Natl Acad. Sci. USA by M Lu (2015) -
Sayah, D. M. & Luban, J. Selection for loss of Ref1 activity in human cells releases human immunodeficiency virus type 1 from cyclophilin A dependence during infection. J. Virol. 78, 12066–12070 (2004).
(
10.1128/JVI.78.21.12066-12070.2004
) / J. Virol. by DM Sayah (2004) -
Stremlau, M., Perron, M., Welikala, S. & Sodroski, J. Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J. Virol. 79, 3139–3145 (2005).
(
10.1128/JVI.79.5.3139-3145.2005
) / J. Virol. by M Stremlau (2005) -
Yap, M. W., Mortuza, G. B., Taylor, I. A. & Stoye, J. P. The design of artificial retroviral restriction factors. Virology 365, 302–314 (2007).
(
10.1016/j.virol.2007.04.005
) / Virology by MW Yap (2007) -
Goldstone, D. C. et al. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc. Natl Acad. Sci. USA 111, 9609–9614 (2014).
(
10.1073/pnas.1402448111
) / Proc. Natl Acad. Sci. USA by DC Goldstone (2014) -
Zhao, G. et al. Rhesus TRIM5alpha disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog. 7, e1002009 (2011).
(
10.1371/journal.ppat.1002009
) / PLoS Pathog. by G Zhao (2011) -
Yang, H. et al. Structural insight into HIV-1 capsid recognition by rhesus TRIM5alpha. Proc. Natl Acad. Sci. USA 109, 18372–18377 (2012).
(
10.1073/pnas.1210903109
) / Proc. Natl Acad. Sci. USA by H Yang (2012) -
Sanchez, J. G. et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc. Natl Acad. Sci. USA 111, 2494–2499 (2014).
(
10.1073/pnas.1318962111
) / Proc. Natl Acad. Sci. USA by JG Sanchez (2014) -
Weinert, C., Morger, D., Djekic, A., Grutter, M. G. & Mittl, P. R. Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci. Rep. 5, 10819 (2015).
(
10.1038/srep10819
) / Sci. Rep. by C Weinert (2015) -
Shi, J., Zhou, J., Shah, V. B., Aiken, C. & Whitby, K. Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J. Virol. 85, 542–549 (2011).
(
10.1128/JVI.01406-10
) / J. Virol. by J Shi (2011) -
Hilditch, L. & Towers, G. J. A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr. Opin. Virol. 4, 32–36 (2014).
(
10.1016/j.coviro.2013.11.003
) / Curr. Opin. Virol. by L Hilditch (2014) -
Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).
(
10.1038/nature09337
) / Nature by N Manel (2010) -
Qi, M., Yang, R. & Aiken, C. Cyclophilin A-dependent restriction of human immunodeficiency virus type 1 capsid mutants for infection of nondividing cells. J. Virol. 82, 12001–12008 (2008).
(
10.1128/JVI.01518-08
) / J. Virol. by M Qi (2008) -
Ylinen, L. M. et al. Cyclophilin A levels dictate infection efficiency of human immunodeficiency virus type 1 capsid escape mutants A92E and G94D. J. Virol. 83, 2044–2047 (2009).
(
10.1128/JVI.01876-08
) / J. Virol. by LM Ylinen (2009) -
Battivelli, E. et al. Strain-specific differences in the impact of human TRIM5alpha, different TRIM5alpha alleles, and the inhibition of capsid-cyclophilin A interactions on the infectivity of HIV-1. J. Virol. 84, 11010–11019 (2010).
(
10.1128/JVI.00758-10
) / J. Virol. by E Battivelli (2010) -
Lin, T. Y. & Emerman, M. Determinants of cyclophilin A-dependent TRIM5 alpha restriction against HIV-1. Virology 379, 335–341 (2008).
(
10.1016/j.virol.2008.06.037
) / Virology by TY Lin (2008) -
Shi, J., Friedman, D. B. & Aiken, C. Retrovirus restriction by TRIM5 proteins requires recognition of only a small fraction of viral capsid subunits. J. Virol. 87, 9271–9278 (2013).
(
10.1128/JVI.00713-13
) / J. Virol. by J Shi (2013) -
Byeon, I. J. et al. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780–790 (2009).
(
10.1016/j.cell.2009.10.010
) / Cell by IJ Byeon (2009) -
Han, Y. et al. Solid-state NMR studies of HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 132, 1976–1987 (2010).
(
10.1021/ja908687k
) / J. Am. Chem. Soc. by Y Han (2010) -
Kol, N. et al. A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007).
(
10.1529/biophysj.106.093914
) / Biophys. J. by N Kol (2007) -
Pang, H. B. et al. Virion stiffness regulates immature HIV-1 entry. Retrovirology 10, 4 (2013).
(
10.1186/1742-4690-10-4
) / Retrovirology by HB Pang (2013) -
Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).
(
10.1006/jsbi.1999.4174
) / J. Struct. Biol. by SJ Ludtke (1999) -
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
(
10.1016/S1047-8477(03)00069-8
) / J. Struct. Biol. by JA Mindell (2003) -
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
(
10.1016/j.jsb.2012.09.006
) / J. Struct. Biol. by SH Scheres (2012) -
Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
(
10.1002/jcc.20084
) / J. Comput. Chem. by EF Pettersen (2004) -
Stone, J. E., McGreevy, R., Isralewitz, B. & Schulten, K. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss 169, 265–283 (2014).
(
10.1039/C4FD00005F
) / Faraday Discuss by JE Stone (2014) -
Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B. & Schulten, K. Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49, 174–180 (2009).
(
10.1016/j.ymeth.2009.04.005
) / Methods by LG Trabuco (2009) -
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
(
10.1002/jcc.20289
) / J. Comput. Chem. by JC Phillips (2005) -
Mackerell, A. D. Jr., Feig, M. & Brooks, C. L. 3rd Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).
(
10.1002/jcc.20065
) / J. Comput. Chem. by AD Mackerell Jr. (2004) -
MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys. Chem.. B 102, 3586–3616 (1998).
(
10.1021/jp973084f
) / J Phys. Chem.. B by AD MacKerell (1998) -
Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).
(
10.1021/ct300400x
) / J. Chem. Theory Comput. by RB Best (2012) -
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
(
10.1063/1.445869
) / J. Chem. Phys. by WL Jorgensen (1983) -
Jiang, W. et al. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. J. Phys. Chem. Lett. 2, 87–92 (2011).
(
10.1021/jz101461d
) / J. Phys. Chem. Lett. by W Jiang (2011) -
Lopes, P. E. et al. Force field for peptides and proteins based on the classical Drude oscillator. J. Chem. Theory Comput. 9, 5430–5449 (2013).
(
10.1021/ct400781b
) / J. Chem. Theory Comput. by PE Lopes (2013) -
Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B. & MacKerell, A. D. A polarizable model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett. 418, 245–249 (2006).
(
10.1016/j.cplett.2005.10.135
) / Chem. Phys. Lett. by G Lamoureux (2006) -
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
(
10.1002/jcc.20945
) / J. Comput. Chem. by S Jo (2008) -
Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).
(
10.1093/nar/gkm276
) / Nucleic Acids Res. by TJ Dolinsky (2007) -
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, (): 27–38 (1996).
(
10.1016/0263-7855(96)00018-5
) / J. Mol. Graph. by W Humphrey (1996)
Dates
Type | When |
---|---|
Created | 9 years, 5 months ago (March 4, 2016, 6:41 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:35 a.m.) |
Indexed | 3 weeks ago (Aug. 2, 2025, 12:56 a.m.) |
Issued | 9 years, 5 months ago (March 4, 2016) |
Published | 9 years, 5 months ago (March 4, 2016) |
Published Online | 9 years, 5 months ago (March 4, 2016) |
@article{Liu_2016, title={Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10714}, DOI={10.1038/ncomms10714}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Liu, Chuang and Perilla, Juan R. and Ning, Jiying and Lu, Manman and Hou, Guangjin and Ramalho, Ruben and Himes, Benjamin A. and Zhao, Gongpu and Bedwell, Gregory J. and Byeon, In-Ja and Ahn, Jinwoo and Gronenborn, Angela M. and Prevelige, Peter E. and Rousso, Itay and Aiken, Christopher and Polenova, Tatyana and Schulten, Klaus and Zhang, Peijun}, year={2016}, month=mar }