Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMetallic-phase MoS2 (M-MoS2) is metastable and does not exist in nature. Pure and stable M-MoS2 has not been previously prepared by chemical synthesis, to the best of our knowledge. Here we report a hydrothermal process for synthesizing stable two-dimensional M-MoS2 nanosheets in water. The metal–metal Raman stretching mode at 146 cm−1 in the M-MoS2 structure, as predicted by theoretical calculations, is experimentally observed. The stability of the M-MoS2 is associated with the adsorption of a monolayer of water molecules on both sides of the nanosheets, which reduce restacking and prevent aggregation in water. The obtained M-MoS2 exhibits excellent stability in water and superior activity for the hydrogen evolution reaction, with a current density of 10 mA cm−2 at a low potential of −175 mV and a Tafel slope of 41 mV per decade.

Bibliography

Geng, X., Sun, W., Wu, W., Chen, B., Al-Hilo, A., Benamara, M., Zhu, H., Watanabe, F., Cui, J., & Chen, T. (2016). Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nature Communications, 7(1).

Authors 10
  1. Xiumei Geng (first)
  2. Weiwei Sun (additional)
  3. Wei Wu (additional)
  4. Benjamin Chen (additional)
  5. Alaa Al-Hilo (additional)
  6. Mourad Benamara (additional)
  7. Hongli Zhu (additional)
  8. Fumiya Watanabe (additional)
  9. Jingbiao Cui (additional)
  10. Tar-pin Chen (additional)
References 31 Referenced 827
  1. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011). (10.1021/nl201874w) / Nano Lett. by G Eda (2011)
  2. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013). (10.1021/ja404523s) / J. Am. Chem. Soc. by MA Lukowski (2013)
  3. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013). (10.1021/nl403661s) / Nano Lett. by D Voiry (2013)
  4. Bai, S., Wang, L., Chen, X., Du, J. & Xiong, Y. Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8, 175–183 (2015). (10.1007/s12274-014-0606-9) / Nano Res. by S Bai (2015)
  5. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015). (10.1038/nnano.2015.40) / Nat. Nanotechnol. by M Acerce (2015)
  6. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983). (10.1139/p83-013) / Can. J. Phys. by MA Py (1983)
  7. Mattheiss, L. F. Band structures of transition-metal–dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973). (10.1103/PhysRevB.8.3719) / Phys. Rev. B by LF Mattheiss (1973)
  8. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014). (10.1038/ncomms3995) / Nat. Commun. by J Zheng (2014)
  9. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012). (10.1021/nn302422x) / ACS Nano by G Eda (2012)
  10. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999). (10.1021/ja983043c) / J. Am. Chem. Soc. by J Heising (1999)
  11. Chou, S. S. et al. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 137, 1742–1745 (2015). (10.1021/ja5107145) / J. Am. Chem. Soc. by SS Chou (2015)
  12. Jiménez Sandoval, S., Yang, D., Frindt, R. F. & Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2 . Phys. Rev. B 44, 3955–3962 (1991). (10.1103/PhysRevB.44.3955) / Phys. Rev. B by S Jiménez Sandoval (1991)
  13. Calandra, M. Chemically exfoliated single-layer MoS2: stability, lattice dynamics, and catalytic adsorption from first principles. Phys. Rev. B 88, 245428 (2013). (10.1103/PhysRevB.88.245428) / Phys. Rev. B by M Calandra (2013)
  14. Güller, F., Llois, A. M., Goniakowski, J. & Noguera, C. Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons. Phys. Rev. B 91, 075407 (2015). (10.1103/PhysRevB.91.075407) / Phys. Rev. B by F Güller (2015)
  15. Liang, Y. et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23, 640–643 (2011). (10.1002/adma.201003560) / Adv. Mater. by Y Liang (2011)
  16. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995). (10.1126/science.267.5195.222) / Science by Y Feldman (1995)
  17. Enyashin, A. N. et al. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C. 115, 24586–24591 (2011). (10.1021/jp2076325) / J. Phys. Chem. C. by AN Enyashin (2011)
  18. Lin, Y. C., Dumcenco, D. O., Huang, Y. S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 . Nat. Nanotechnol. 9, 391–396 (2014). (10.1038/nnano.2014.64) / Nat. Nanotechnol. by YC Lin (2014)
  19. Nayak, A. P. et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014). (10.1038/ncomms4731) / Nat. Commun. by AP Nayak (2014)
  20. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014). (10.1038/nmat4080) / Nat. Mater. by R Kappera (2014)
  21. Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013). (10.1073/pnas.1316792110) / Proc. Natl Acad. Sci. USA by H Wang (2013)
  22. Lee, J. et al. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014). (10.1038/srep07352) / Sci. Rep. by J Lee (2014)
  23. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  24. Joensen, P., Crozier, E. D., Alberding, N. & Frindt, R. F. A study of single-layer and restacked MoS2 by x-ray diffraction and x-ray absorption spectroscopy. J. Phys. C: Solid State Phys. 20, 4043–4053 (1987). (10.1088/0022-3719/20/26/009) / Phys. C: Solid State Phys. by P Joensen (1987)
  25. Qin, X. R. Scanning Tunneling Microcopy of Layered Materials (PhD Thesis. Simon Fraser Univ., (1992).
  26. Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2 . ACS Nano 8, 7914–7922 (2014). (10.1021/nn5029295) / ACS Nano by AB Farimani (2014)
  27. Liu, K.K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012). (10.1021/nl2043612) / Nano Lett. by KK Liu (2012)
  28. Koroteev, V. O., Bulusheva, L. G., Okotrub, A. V., Yudanov, N. F. & Vyalikh, D. V. Formation of MoS2 nanoparticles on the surface of reduced graphite oxide. Phys. Stat. Solid. B 248, 2740–2743 (2011). (10.1002/pssb.201100123) / Phys. Stat. Solid. B by VO Koroteev (2011)
  29. Liao, L. et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 23, 5326–5333 (2013). (10.1002/adfm.201300318) / Adv. Funct. Mater. by L Liao (2013)
  30. Diemann, E., Weber, T. & Muller, A. Modeling the thiophene HDS reaction on a molecular level. J. Catal. 148, 288–303 (1994). (10.1006/jcat.1994.1210) / J. Catal. by E Diemann (1994)
  31. Chang, C. H. & Chan, S. S. Infrared and raman studies of amorphous MoS3 and poorly crystalline MoS2 . J. Catal. 72, 139–148 (1981). (10.1016/0021-9517(81)90085-3) / J. Catal. by CH Chang (1981)
Dates
Type When
Created 9 years, 6 months ago (Feb. 10, 2016, 5:47 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:39 a.m.)
Indexed 1 week, 3 days ago (Aug. 12, 2025, 6:16 p.m.)
Issued 9 years, 6 months ago (Feb. 10, 2016)
Published 9 years, 6 months ago (Feb. 10, 2016)
Published Online 9 years, 6 months ago (Feb. 10, 2016)
Funders 0

None

@article{Geng_2016, title={Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10672}, DOI={10.1038/ncomms10672}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Geng, Xiumei and Sun, Weiwei and Wu, Wei and Chen, Benjamin and Al-Hilo, Alaa and Benamara, Mourad and Zhu, Hongli and Watanabe, Fumiya and Cui, Jingbiao and Chen, Tar-pin}, year={2016}, month=feb }