Abstract
AbstractMetallic-phase MoS2 (M-MoS2) is metastable and does not exist in nature. Pure and stable M-MoS2 has not been previously prepared by chemical synthesis, to the best of our knowledge. Here we report a hydrothermal process for synthesizing stable two-dimensional M-MoS2 nanosheets in water. The metal–metal Raman stretching mode at 146 cm−1 in the M-MoS2 structure, as predicted by theoretical calculations, is experimentally observed. The stability of the M-MoS2 is associated with the adsorption of a monolayer of water molecules on both sides of the nanosheets, which reduce restacking and prevent aggregation in water. The obtained M-MoS2 exhibits excellent stability in water and superior activity for the hydrogen evolution reaction, with a current density of 10 mA cm−2 at a low potential of −175 mV and a Tafel slope of 41 mV per decade.
References
31
Referenced
827
-
Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).
(
10.1021/nl201874w
) / Nano Lett. by G Eda (2011) -
Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).
(
10.1021/ja404523s
) / J. Am. Chem. Soc. by MA Lukowski (2013) -
Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).
(
10.1021/nl403661s
) / Nano Lett. by D Voiry (2013) -
Bai, S., Wang, L., Chen, X., Du, J. & Xiong, Y. Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8, 175–183 (2015).
(
10.1007/s12274-014-0606-9
) / Nano Res. by S Bai (2015) -
Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).
(
10.1038/nnano.2015.40
) / Nat. Nanotechnol. by M Acerce (2015) -
Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).
(
10.1139/p83-013
) / Can. J. Phys. by MA Py (1983) -
Mattheiss, L. F. Band structures of transition-metal–dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).
(
10.1103/PhysRevB.8.3719
) / Phys. Rev. B by LF Mattheiss (1973) -
Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).
(
10.1038/ncomms3995
) / Nat. Commun. by J Zheng (2014) -
Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012).
(
10.1021/nn302422x
) / ACS Nano by G Eda (2012) -
Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999).
(
10.1021/ja983043c
) / J. Am. Chem. Soc. by J Heising (1999) -
Chou, S. S. et al. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 137, 1742–1745 (2015).
(
10.1021/ja5107145
) / J. Am. Chem. Soc. by SS Chou (2015) -
Jiménez Sandoval, S., Yang, D., Frindt, R. F. & Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2 . Phys. Rev. B 44, 3955–3962 (1991).
(
10.1103/PhysRevB.44.3955
) / Phys. Rev. B by S Jiménez Sandoval (1991) -
Calandra, M. Chemically exfoliated single-layer MoS2: stability, lattice dynamics, and catalytic adsorption from first principles. Phys. Rev. B 88, 245428 (2013).
(
10.1103/PhysRevB.88.245428
) / Phys. Rev. B by M Calandra (2013) -
Güller, F., Llois, A. M., Goniakowski, J. & Noguera, C. Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons. Phys. Rev. B 91, 075407 (2015).
(
10.1103/PhysRevB.91.075407
) / Phys. Rev. B by F Güller (2015) -
Liang, Y. et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23, 640–643 (2011).
(
10.1002/adma.201003560
) / Adv. Mater. by Y Liang (2011) -
Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).
(
10.1126/science.267.5195.222
) / Science by Y Feldman (1995) -
Enyashin, A. N. et al. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C. 115, 24586–24591 (2011).
(
10.1021/jp2076325
) / J. Phys. Chem. C. by AN Enyashin (2011) -
Lin, Y. C., Dumcenco, D. O., Huang, Y. S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2 . Nat. Nanotechnol. 9, 391–396 (2014).
(
10.1038/nnano.2014.64
) / Nat. Nanotechnol. by YC Lin (2014) -
Nayak, A. P. et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014).
(
10.1038/ncomms4731
) / Nat. Commun. by AP Nayak (2014) -
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
(
10.1038/nmat4080
) / Nat. Mater. by R Kappera (2014) -
Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).
(
10.1073/pnas.1316792110
) / Proc. Natl Acad. Sci. USA by H Wang (2013) -
Lee, J. et al. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 4, 7352 (2014).
(
10.1038/srep07352
) / Sci. Rep. by J Lee (2014) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by KF Mak (2010) -
Joensen, P., Crozier, E. D., Alberding, N. & Frindt, R. F. A study of single-layer and restacked MoS2 by x-ray diffraction and x-ray absorption spectroscopy. J. Phys. C: Solid State Phys. 20, 4043–4053 (1987).
(
10.1088/0022-3719/20/26/009
) / Phys. C: Solid State Phys. by P Joensen (1987) - Qin, X. R. Scanning Tunneling Microcopy of Layered Materials (PhD Thesis. Simon Fraser Univ., (1992).
-
Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2 . ACS Nano 8, 7914–7922 (2014).
(
10.1021/nn5029295
) / ACS Nano by AB Farimani (2014) -
Liu, K.K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).
(
10.1021/nl2043612
) / Nano Lett. by KK Liu (2012) -
Koroteev, V. O., Bulusheva, L. G., Okotrub, A. V., Yudanov, N. F. & Vyalikh, D. V. Formation of MoS2 nanoparticles on the surface of reduced graphite oxide. Phys. Stat. Solid. B 248, 2740–2743 (2011).
(
10.1002/pssb.201100123
) / Phys. Stat. Solid. B by VO Koroteev (2011) -
Liao, L. et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 23, 5326–5333 (2013).
(
10.1002/adfm.201300318
) / Adv. Funct. Mater. by L Liao (2013) -
Diemann, E., Weber, T. & Muller, A. Modeling the thiophene HDS reaction on a molecular level. J. Catal. 148, 288–303 (1994).
(
10.1006/jcat.1994.1210
) / J. Catal. by E Diemann (1994) -
Chang, C. H. & Chan, S. S. Infrared and raman studies of amorphous MoS3 and poorly crystalline MoS2 . J. Catal. 72, 139–148 (1981).
(
10.1016/0021-9517(81)90085-3
) / J. Catal. by CH Chang (1981)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 10, 2016, 5:47 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:39 a.m.) |
Indexed | 1 week, 3 days ago (Aug. 12, 2025, 6:16 p.m.) |
Issued | 9 years, 6 months ago (Feb. 10, 2016) |
Published | 9 years, 6 months ago (Feb. 10, 2016) |
Published Online | 9 years, 6 months ago (Feb. 10, 2016) |
@article{Geng_2016, title={Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10672}, DOI={10.1038/ncomms10672}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Geng, Xiumei and Sun, Weiwei and Wu, Wei and Chen, Benjamin and Al-Hilo, Alaa and Benamara, Mourad and Zhu, Hongli and Watanabe, Fumiya and Cui, Jingbiao and Chen, Tar-pin}, year={2016}, month=feb }