Abstract
AbstractHotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3’ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease.
Bibliography
Alsafadi, S., Houy, A., Battistella, A., Popova, T., Wassef, M., Henry, E., Tirode, F., Constantinou, A., Piperno-Neumann, S., Roman-Roman, S., Dutertre, M., & Stern, M.-H. (2016). Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nature Communications, 7(1).
Authors
12
- Samar Alsafadi (first)
- Alexandre Houy (additional)
- Aude Battistella (additional)
- Tatiana Popova (additional)
- Michel Wassef (additional)
- Emilie Henry (additional)
- Franck Tirode (additional)
- Angelos Constantinou (additional)
- Sophie Piperno-Neumann (additional)
- Sergio Roman-Roman (additional)
- Martin Dutertre (additional)
- Marc-Henri Stern (additional)
References
32
Referenced
338
-
Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 44, 47–52 (2012).
(
10.1038/ng.1032
) / Nature Genet. by V Quesada (2012) -
Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).
(
10.1038/nature10496
) / Nature by K Yoshida (2011) -
Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011).
(
10.1056/NEJMoa1109016
) / N. Engl. J. Med. by L Wang (2011) -
Zhang, J. & Manley, J. L. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 3, 1228–1237 (2013).
(
10.1158/2159-8290.CD-13-0253
) / Cancer Discov. by J Zhang (2013) -
Furney, S. J. et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 3, 1122–1129 (2013).
(
10.1158/2159-8290.CD-13-0330
) / Cancer Discov. by SJ Furney (2013) -
Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nature Genet. 45, 133–135 (2013).
(
10.1038/ng.2523
) / Nature Genet. by JW Harbour (2013) -
Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genet. 45, 933–936 (2013).
(
10.1038/ng.2674
) / Nature Genet. by M Martin (2013) -
Maguire, S. L. et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J. Pathol. 235, 571–580 (2015).
(
10.1002/path.4483
) / J. Pathol. by SL Maguire (2015) -
Kong, Y., Krauthammer, M. & Halaban, R. Rare SF3B1 R625 mutations in cutaneous melanoma. Melanoma Res. 24, 332–334 (2014).
(
10.1097/CMR.0000000000000071
) / Melanoma Res. by Y Kong (2014) -
Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).
(
10.1016/j.cell.2009.02.009
) / Cell by MC Wahl (2009) -
Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell Biol. 18, 4752–4760 (1998).
(
10.1128/MCB.18.8.4752
) / Mol. Cell Biol. by O Gozani (1998) -
DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3' splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).
(
10.1371/journal.pcbi.1004105
) / PLoS Comput. Biol. by C DeBoever (2015) -
Mercer, T. R. et al. Genome-wide discovery of human splicing branchpoints. Genome Res. 25, 290–303 (2015).
(
10.1101/gr.182899.114
) / Genome Res. by TR Mercer (2015) -
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
(
10.1186/s13059-014-0550-8
) / Genome Biol. by MI Love (2014) -
Wu, S., Romfo, C. M., Nilsen, T. W. & Green, M. R. Functional recognition of the 3' splice site AG by the splicing factor U2AF35. Nature 402, 832–835 (1999).
(
10.1038/45590
) / Nature by S Wu (1999) -
Guth, S., Martinez, C., Gaur, R. K. & Valcarcel, J. Evidence for substrate-specific requirement of the splicing factor U2AF(35) and for its function after polypyrimidine tract recognition by U2AF(65). Mol. Cell Biol. 19, 8263–8271 (1999).
(
10.1128/MCB.19.12.8263
) / Mol. Cell Biol. by S Guth (1999) -
Guth, S., Tange, T. O., Kellenberger, E. & Valcarcel, J. Dual function for U2AF(35) in AG-dependent pre-mRNA splicing. Mol. Cell Biol. 21, 7673–7681 (2001).
(
10.1128/MCB.21.22.7673-7681.2001
) / Mol. Cell Biol. by S Guth (2001) -
Pacheco, T. R., Coelho, M. B., Desterro, J. M., Mollet, I. & Carmo-Fonseca, M. In vivo requirement of the small subunit of U2AF for recognition of a weak 3′ splice site. Mol. Cell Biol. 26, 8183–8190 (2006).
(
10.1128/MCB.00350-06
) / Mol. Cell Biol. by TR Pacheco (2006) -
Shao, C. et al. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 21, 997–1005 (2014).
(
10.1038/nsmb.2906
) / Nat. Struct. Mol. Biol. by C Shao (2014) -
Corvelo, A., Hallegger, M., Smith, C. W. & Eyras, E. Genome-wide association between branch point properties and alternative splicing. PLoS Comput. Biol. 6, e1001016 (2010).
(
10.1371/journal.pcbi.1001016
) / PLoS Comput. Biol. by A Corvelo (2010) -
Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011).
(
10.1101/gad.2014311
) / Genes Dev. by A Corrionero (2011) -
Gentien, D. et al. A common alternative splicing signature is associated with SF3B1 mutations in malignancies from different cell lineages. Leukemia 28, 1355–1357 (2014).
(
10.1038/leu.2014.28
) / Leukemia by D Gentien (2014) -
Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3? Splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).
(
10.1016/j.celrep.2015.09.053
) / Cell Rep. by RB Darman (2015) -
Norton, P. A. Polypyrimidine tract sequences direct selection of alternative branch sites and influence protein binding. Nucleic Acids Res. 22, 3854–3860 (1994).
(
10.1093/nar/22.19.3854
) / Nucleic Acids Res. by PA Norton (1994) -
Khan, S. G. et al. Two essential splice lariat branchpoint sequences in one intron in a xeroderma pigmentosum DNA repair gene: mutations result in reduced XPC mRNA levels that correlate with cancer risk. Hum. Mol. Genet. 13, 343–352 (2004).
(
10.1093/hmg/ddh026
) / Hum. Mol. Genet. by SG Khan (2004) -
Schellenberg, M. J. et al. Crystal structure of a core spliceosomal protein interface. Proc. Natl Acad. Sci. USA 103, 1266–1271 (2006).
(
10.1073/pnas.0508048103
) / Proc. Natl Acad. Sci. USA by MJ Schellenberg (2006) -
Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).
(
10.1038/nrd3823
) / Nat. Rev. Drug Discov. by S Bonnal (2012) -
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
(
10.1186/gb-2013-14-4-r36
) / Genome Biol. by D Kim (2013) -
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
(
10.1101/gr.849004
) / Genome Res. by GE Crooks (2004) -
Desmet, F. O. et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37, e67 (2009).
(
10.1093/nar/gkp215
) / Nucleic Acids Res. by FO Desmet (2009) -
Amirouchene-Angelozzi, N. et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 8, 1508–1520 (2014).
(
10.1016/j.molonc.2014.06.004
) / Mol. Oncol. by N Amirouchene-Angelozzi (2014) -
Tsoi, H., Lau, C. K., Lau, K. F. & Chan, H. Y. Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases. Hum. Mol. Genet. 20, 3787–3797 (2011).
(
10.1093/hmg/ddr297
) / Hum. Mol. Genet. by H Tsoi (2011)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Feb. 4, 2016, 6:04 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:45 a.m.) |
Indexed | 6 days, 15 hours ago (Aug. 27, 2025, 11:50 a.m.) |
Issued | 9 years, 6 months ago (Feb. 4, 2016) |
Published | 9 years, 6 months ago (Feb. 4, 2016) |
Published Online | 9 years, 6 months ago (Feb. 4, 2016) |
@article{Alsafadi_2016, title={Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10615}, DOI={10.1038/ncomms10615}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Alsafadi, Samar and Houy, Alexandre and Battistella, Aude and Popova, Tatiana and Wassef, Michel and Henry, Emilie and Tirode, Franck and Constantinou, Angelos and Piperno-Neumann, Sophie and Roman-Roman, Sergio and Dutertre, Martin and Stern, Marc-Henri}, year={2016}, month=feb }