Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractHotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3’ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease.

Bibliography

Alsafadi, S., Houy, A., Battistella, A., Popova, T., Wassef, M., Henry, E., Tirode, F., Constantinou, A., Piperno-Neumann, S., Roman-Roman, S., Dutertre, M., & Stern, M.-H. (2016). Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nature Communications, 7(1).

Authors 12
  1. Samar Alsafadi (first)
  2. Alexandre Houy (additional)
  3. Aude Battistella (additional)
  4. Tatiana Popova (additional)
  5. Michel Wassef (additional)
  6. Emilie Henry (additional)
  7. Franck Tirode (additional)
  8. Angelos Constantinou (additional)
  9. Sophie Piperno-Neumann (additional)
  10. Sergio Roman-Roman (additional)
  11. Martin Dutertre (additional)
  12. Marc-Henri Stern (additional)
References 32 Referenced 338
  1. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nature Genet. 44, 47–52 (2012). (10.1038/ng.1032) / Nature Genet. by V Quesada (2012)
  2. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011). (10.1038/nature10496) / Nature by K Yoshida (2011)
  3. Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011). (10.1056/NEJMoa1109016) / N. Engl. J. Med. by L Wang (2011)
  4. Zhang, J. & Manley, J. L. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 3, 1228–1237 (2013). (10.1158/2159-8290.CD-13-0253) / Cancer Discov. by J Zhang (2013)
  5. Furney, S. J. et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 3, 1122–1129 (2013). (10.1158/2159-8290.CD-13-0330) / Cancer Discov. by SJ Furney (2013)
  6. Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nature Genet. 45, 133–135 (2013). (10.1038/ng.2523) / Nature Genet. by JW Harbour (2013)
  7. Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genet. 45, 933–936 (2013). (10.1038/ng.2674) / Nature Genet. by M Martin (2013)
  8. Maguire, S. L. et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J. Pathol. 235, 571–580 (2015). (10.1002/path.4483) / J. Pathol. by SL Maguire (2015)
  9. Kong, Y., Krauthammer, M. & Halaban, R. Rare SF3B1 R625 mutations in cutaneous melanoma. Melanoma Res. 24, 332–334 (2014). (10.1097/CMR.0000000000000071) / Melanoma Res. by Y Kong (2014)
  10. Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009). (10.1016/j.cell.2009.02.009) / Cell by MC Wahl (2009)
  11. Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell Biol. 18, 4752–4760 (1998). (10.1128/MCB.18.8.4752) / Mol. Cell Biol. by O Gozani (1998)
  12. DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3' splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015). (10.1371/journal.pcbi.1004105) / PLoS Comput. Biol. by C DeBoever (2015)
  13. Mercer, T. R. et al. Genome-wide discovery of human splicing branchpoints. Genome Res. 25, 290–303 (2015). (10.1101/gr.182899.114) / Genome Res. by TR Mercer (2015)
  14. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (10.1186/s13059-014-0550-8) / Genome Biol. by MI Love (2014)
  15. Wu, S., Romfo, C. M., Nilsen, T. W. & Green, M. R. Functional recognition of the 3' splice site AG by the splicing factor U2AF35. Nature 402, 832–835 (1999). (10.1038/45590) / Nature by S Wu (1999)
  16. Guth, S., Martinez, C., Gaur, R. K. & Valcarcel, J. Evidence for substrate-specific requirement of the splicing factor U2AF(35) and for its function after polypyrimidine tract recognition by U2AF(65). Mol. Cell Biol. 19, 8263–8271 (1999). (10.1128/MCB.19.12.8263) / Mol. Cell Biol. by S Guth (1999)
  17. Guth, S., Tange, T. O., Kellenberger, E. & Valcarcel, J. Dual function for U2AF(35) in AG-dependent pre-mRNA splicing. Mol. Cell Biol. 21, 7673–7681 (2001). (10.1128/MCB.21.22.7673-7681.2001) / Mol. Cell Biol. by S Guth (2001)
  18. Pacheco, T. R., Coelho, M. B., Desterro, J. M., Mollet, I. & Carmo-Fonseca, M. In vivo requirement of the small subunit of U2AF for recognition of a weak 3′ splice site. Mol. Cell Biol. 26, 8183–8190 (2006). (10.1128/MCB.00350-06) / Mol. Cell Biol. by TR Pacheco (2006)
  19. Shao, C. et al. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 21, 997–1005 (2014). (10.1038/nsmb.2906) / Nat. Struct. Mol. Biol. by C Shao (2014)
  20. Corvelo, A., Hallegger, M., Smith, C. W. & Eyras, E. Genome-wide association between branch point properties and alternative splicing. PLoS Comput. Biol. 6, e1001016 (2010). (10.1371/journal.pcbi.1001016) / PLoS Comput. Biol. by A Corvelo (2010)
  21. Corrionero, A., Minana, B. & Valcarcel, J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 25, 445–459 (2011). (10.1101/gad.2014311) / Genes Dev. by A Corrionero (2011)
  22. Gentien, D. et al. A common alternative splicing signature is associated with SF3B1 mutations in malignancies from different cell lineages. Leukemia 28, 1355–1357 (2014). (10.1038/leu.2014.28) / Leukemia by D Gentien (2014)
  23. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3? Splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015). (10.1016/j.celrep.2015.09.053) / Cell Rep. by RB Darman (2015)
  24. Norton, P. A. Polypyrimidine tract sequences direct selection of alternative branch sites and influence protein binding. Nucleic Acids Res. 22, 3854–3860 (1994). (10.1093/nar/22.19.3854) / Nucleic Acids Res. by PA Norton (1994)
  25. Khan, S. G. et al. Two essential splice lariat branchpoint sequences in one intron in a xeroderma pigmentosum DNA repair gene: mutations result in reduced XPC mRNA levels that correlate with cancer risk. Hum. Mol. Genet. 13, 343–352 (2004). (10.1093/hmg/ddh026) / Hum. Mol. Genet. by SG Khan (2004)
  26. Schellenberg, M. J. et al. Crystal structure of a core spliceosomal protein interface. Proc. Natl Acad. Sci. USA 103, 1266–1271 (2006). (10.1073/pnas.0508048103) / Proc. Natl Acad. Sci. USA by MJ Schellenberg (2006)
  27. Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012). (10.1038/nrd3823) / Nat. Rev. Drug Discov. by S Bonnal (2012)
  28. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013). (10.1186/gb-2013-14-4-r36) / Genome Biol. by D Kim (2013)
  29. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004). (10.1101/gr.849004) / Genome Res. by GE Crooks (2004)
  30. Desmet, F. O. et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37, e67 (2009). (10.1093/nar/gkp215) / Nucleic Acids Res. by FO Desmet (2009)
  31. Amirouchene-Angelozzi, N. et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 8, 1508–1520 (2014). (10.1016/j.molonc.2014.06.004) / Mol. Oncol. by N Amirouchene-Angelozzi (2014)
  32. Tsoi, H., Lau, C. K., Lau, K. F. & Chan, H. Y. Perturbation of U2AF65/NXF1-mediated RNA nuclear export enhances RNA toxicity in polyQ diseases. Hum. Mol. Genet. 20, 3787–3797 (2011). (10.1093/hmg/ddr297) / Hum. Mol. Genet. by H Tsoi (2011)
Dates
Type When
Created 9 years, 6 months ago (Feb. 4, 2016, 6:04 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:45 a.m.)
Indexed 6 days, 15 hours ago (Aug. 27, 2025, 11:50 a.m.)
Issued 9 years, 6 months ago (Feb. 4, 2016)
Published 9 years, 6 months ago (Feb. 4, 2016)
Published Online 9 years, 6 months ago (Feb. 4, 2016)
Funders 0

None

@article{Alsafadi_2016, title={Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10615}, DOI={10.1038/ncomms10615}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Alsafadi, Samar and Houy, Alexandre and Battistella, Aude and Popova, Tatiana and Wassef, Michel and Henry, Emilie and Tirode, Franck and Constantinou, Angelos and Piperno-Neumann, Sophie and Roman-Roman, Sergio and Dutertre, Martin and Stern, Marc-Henri}, year={2016}, month=feb }