Abstract
AbstractCrystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.
References
36
Referenced
65
-
Wong, H.-S.P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010) .
(
10.1109/JPROC.2010.2070050
) / Proc. IEEE by H-SP Wong (2010) -
Bez, R. & Pirovano, A. Non-volatile memory technologies: emerging concepts and new materials. Mater. Sc. Semicond. Process. 7, 349–355 (2004) .
(
10.1016/j.mssp.2004.09.127
) / Mater. Sc. Semicond. Process. by R Bez (2004) - Pirovano, A. et al. in IEDM '03 Technical Digest IEEE International Electron Devices Meeting, 699–702 (Washington, DC, USA, 2003) .
- Chen, Y. C. et al. in IEDM '06 International Electron Devices Meeting, 1–4 (San Francisco, CA, USA, 2006) .
-
Lankhorst, M. H., Ketelaars, B. W. & Wolters, R. A. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005) .
(
10.1038/nmat1350
) / Nat. Mater. by MH Lankhorst (2005) -
Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011) .
(
10.1126/science.1201938
) / Science by F Xiong (2011) -
Xiong, F. et al. Self-aligned nanotube–nanowire phase change memory. Nano Lett. 13, 464–46902 (2012) .
(
10.1021/nl3038097
) / Nano Lett. by F Xiong (2012) -
Lee, S.-H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nat. Nanotechnol. 2, 626–630 (2007) .
(
10.1038/nnano.2007.291
) / Nat. Nanotechnol. by S-H Lee (2007) - Hwang, Y. N. et al. in IEDM '03 Technical Digest. IEEE International Electron Devices Meeting, 893–896 (Washington, DC, USA, 2003) .
-
Qiao, B. et al. Effects of Si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory. Appl. Surf. Sci. 252, 8404–8409 (2006) .
(
10.1016/j.apsusc.2005.11.047
) / Appl. Surf. Sci. by B Qiao (2006) -
Kim, C. et al. Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices. Appl. Phys. Lett. 94, 193504 (2009) .
(
10.1063/1.3127223
) / Appl. Phys. Lett. by C Kim (2009) - Moran, M. J., Shapiro., H. N., Boettner, D. D. & Bailey., M. B. Fundamentals of Engineering Thermodynamics 8th edn John Wiley & Sons (2014) .
-
Nukala, P. et al. Direct observation of metal-insulator transition in single-crystalline germanium telluride nanowire memory devices prior to amorphization. Nano Lett. 14, 2201–2209 (2014) .
(
10.1021/nl5007036
) / Nano Lett. by P Nukala (2014) - Mott., N. F. Metal-Insulator Transitions 2nd edn Taylor & Francis (1990) .
- Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials Vol. 2, Oxford Univ. Press Inc. (1979) .
-
Kolobov, A. V., Krbal, M., Fons, P., Tominaga, J. & Uruga, T. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nat. Chem. 3, 311–316 (2011) .
(
10.1038/nchem.1007
) / Nat. Chem. by AV Kolobov (2011) -
Edwards, A. H. et al. Electronic structure of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 73, 045210 (2006) .
(
10.1103/PhysRevB.73.045210
) / Phys. Rev. B by AH Edwards (2006) -
Nam, S. W. et al. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336, 1561–1566 (2012) .
(
10.1126/science.1220119
) / Science by SW Nam (2012) -
Lee, S.-H., Ko, D.-K., Jung, Y. & Agarwal, R. Size-dependent phase transition memory switching behaviour and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89, 223116 (2006) .
(
10.1063/1.2397558
) / Appl. Phys. Lett. by S-H Lee (2006) -
Composto, R. J., Walters, R. M. & Genzer, J. Application of ion scattering techniques to characterize polymer surfaces and interfaces. Mater. Sci. Eng. Rep. 38, 107–180 (2002) .
(
10.1016/S0927-796X(02)00009-8
) / Mater. Sci. Eng. Rep. by RJ Composto (2002) -
Iwakiri, H., Yasunaga, K., Morishita, K. & Yoshida, N. Microstructure evolution in tungsten during low-energy helium ion irradiation. J. Nucl. Mater. 283, 1134 (2000) .
(
10.1016/S0022-3115(00)00289-0
) / J. Nucl. Mater. by H Iwakiri (2000) -
Mooij, J. H. Electrical conduction in concentrated disordered transition metal alloys. Phys. Stat. Sol. 17, 521–530 (1973) .
(
10.1002/pssa.2210170217
) / Phys. Stat. Sol. by JH Mooij (1973) -
Park, M.-A., Savran, K. & Kim, Y.-J. Weak localization and the Mooij rule in disordered materials. Phys. Stat. Sol. 237, 500–506 (2003) .
(
10.1002/pssb.200301654
) / Phys. Stat. Sol. by M-A Park (2003) - Harris, S. An Introduction to the Theory of Boltzmann Equation Dover Publications (1999) .
-
Lee, P. A. & Ramakrishnan, T. V. et al. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985) .
(
10.1103/RevModPhys.57.287
) / Rev. Mod. Phys. by PA Lee (1985) -
Yu, K. Y. et al. Radiation damage in helium ion irradiated nanocrystalline Fe. J. Nucl. Mater. 2012, 140–146 (2012) .
(
10.1016/j.jnucmat.2011.10.052
) / J. Nucl. Mater. by KY Yu (2012) -
Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F. & Bez, R. Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452–459 (2004) .
(
10.1109/TED.2003.823243
) / IEEE Trans. Electron Devices by A Pirovano (2004) -
Zallen, R. The Physics of Amorphous Solids John Wiley & Sons (1983) .
(
10.1002/3527602798
) -
Longeaud, C., Luckas, J. & Wuttig, M. Some results on the germanium telluride density of states. J. Phys. Conf. Ser. 398, 012007 (2012) .
(
10.1088/1742-6596/398/1/012007
) / J. Phys. Conf. Ser. by C Longeaud (2012) -
He, Q. et al. Continuous controllable amorphization ratio of nanoscale phase change memory cells. Appl. Phys. Lett. 104, 223502 (2014) .
(
10.1063/1.4880936
) / Appl. Phys. Lett. by Q He (2014) -
Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H. S. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12, 2179–2186 (2012) .
(
10.1021/nl201040y
) / Nano Lett. by D Kuzum (2012) -
Wright, C. D., Hosseini, P. & Diosdado, J. A. V. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23, 2248–2254 (2013) .
(
10.1002/adfm.201202383
) / Adv. Funct. Mater. by CD Wright (2013) -
Jie, F. et al. Design of multi-states storage medium for phase change memory. Jpn J. Appl. Phys. 46, 5724–5727 (2007) .
(
10.1143/JJAP.46.5724
) / Jpn J. Appl. Phys. by F Jie (2007) -
Skelton, J. M., Loke, D., Lee, T. H. & Elliott, S. R. Understanding the multistate SET process in Ge-Sb-Te-based phase-change memory. J. Appl. Phys. 112, 064901 (2012) .
(
10.1063/1.4748961
) / J. Appl. Phys. by JM Skelton (2012) -
Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011) .
(
10.1038/nmat2934
) / Nat. Mater. by T Siegrist (2011) -
Hudgens, S. & Johnson, B. Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull. 29, 829–832 (2004) .
(
10.1557/mrs2004.236
) / MRS Bull. by S Hudgens (2004)
Dates
Type | When |
---|---|
Created | 9 years, 6 months ago (Jan. 25, 2016, 4:59 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:46 a.m.) |
Indexed | 1 month, 2 weeks ago (July 6, 2025, 7 p.m.) |
Issued | 9 years, 6 months ago (Jan. 25, 2016) |
Published | 9 years, 6 months ago (Jan. 25, 2016) |
Published Online | 9 years, 6 months ago (Jan. 25, 2016) |
@article{Nukala_2016, title={Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10482}, DOI={10.1038/ncomms10482}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Nukala, Pavan and Lin, Chia-Chun and Composto, Russell and Agarwal, Ritesh}, year={2016}, month=jan }