Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractPerovskite solar cells are one of the most promising photovoltaic technologies with their extraordinary progress in efficiency and the simple processes required to produce them. However, the frequent presence of a pronounced hysteresis in the current voltage characteristic of these devices arises concerns on the intrinsic stability of organo-metal halides, challenging the reliability of technology itself. Here, we show that n-doping of mesoporous TiO2 is accomplished by facile post treatment of the films with lithium salts. We demonstrate that the Li-doped TiO2 electrodes exhibit superior electronic properties, by reducing electronic trap states enabling faster electron transport. Perovskite solar cells prepared using the Li-doped films as scaffold to host the CH3NH3PbI3 light harvester produce substantially higher performances compared with undoped electrodes, improving the power conversion efficiency from 17 to over 19% with negligible hysteretic behaviour (lower than 0.3%).

Bibliography

Giordano, F., Abate, A., Correa Baena, J. P., Saliba, M., Matsui, T., Im, S. H., Zakeeruddin, S. M., Nazeeruddin, M. K., Hagfeldt, A., & Graetzel, M. (2016). Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 7(1).

Authors 10
  1. Fabrizio Giordano (first)
  2. Antonio Abate (additional)
  3. Juan Pablo Correa Baena (additional)
  4. Michael Saliba (additional)
  5. Taisuke Matsui (additional)
  6. Sang Hyuk Im (additional)
  7. Shaik M. Zakeeruddin (additional)
  8. Mohammad Khaja Nazeeruddin (additional)
  9. Anders Hagfeldt (additional)
  10. Michael Graetzel (additional)
References 59 Referenced 808
  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). (10.1021/ja809598r) / J. Am. Chem. Soc. by A Kojima (2009)
  2. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). (10.1126/science.aaa9272) / Science by WS Yang (2015)
  3. Park, N. G. Perovskite solar cells:an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015). (10.1016/j.mattod.2014.07.007) / Mater. Today by NG Park (2015)
  4. NREL Efficiency chart http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2015).
  5. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). (10.1126/science.1228604) / Science by MM Lee (2012)
  6. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014). (10.1039/c3ee43822h) / Energy Environ. Sci. by GE Eperon (2014)
  7. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. & Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). (10.1038/nphoton.2014.82) / Nat. Photonics by F Hao (2014)
  8. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014). (10.1039/C4EE01076K) / Energy Environ. Sci. by NK Noel (2014)
  9. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). (10.1038/nature12340) / Nature by J Burschka (2013)
  10. Xiao, Z. et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7, 2619–2623 (2014). (10.1039/C4EE01138D) / Energy Environ. Sci. by Z Xiao (2014)
  11. Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013). (10.1021/ja411509g) / J. Am. Chem. Soc. by Q Chen (2013)
  12. Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014). (10.1039/C4EE01546K) / Energy Environ. Sci. by AT Barrows (2014)
  13. Sutherland, B. R. et al. Perovskite thin films via atomic layer deposition. Adv. Mater. 27, 53–58 (2015). (10.1002/adma.201403965) / Adv. Mater. by BR Sutherland (2015)
  14. Wei, Z., Chen, H., Yan, K. & Yang, S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar Perovskite solar cells. Angew. Chem. 126, 13455–13459 (2014). (10.1002/ange.201408638) / Angew. Chem. by Z Wei (2014)
  15. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). (10.1038/nature12509) / Nature by M Liu (2013)
  16. Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014). (10.1038/nphoton.2013.341) / Nat. Photonics by O Malinkiewicz (2014)
  17. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). (10.1126/science.1243982) / Science by SD Stranks (2013)
  18. Xing, G. et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). (10.1126/science.1243167) / Science by G Xing (2013)
  19. Dong, Q. et al. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). (10.1126/science.aaa5760) / Science by Q Dong (2015)
  20. Pellet, N. et al. Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014). (10.1002/anie.201309361) / Angew. Chem. Int. Ed. by N Pellet (2014)
  21. Ogomi, Y. et al. CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014). (10.1021/jz5002117) / J. Phys. Chem. Lett. by Y Ogomi (2014)
  22. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). (10.1021/ic401215x) / Inorg. Chem. by CC Stoumpos (2013)
  23. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). (10.1021/nl400349b) / Nano Lett. by JH Noh (2013)
  24. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). (10.1038/nature14133) / Nature by NJ Jeon (2015)
  25. Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013). (10.1038/nature11936) / Nature by EJW Crossland (2013)
  26. O'Regan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). (10.1038/353737a0) / Nature by B O'Regan (1991)
  27. Ko, K. H., Lee, Y. C. & Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions. J. Colloid Interface Sci. 283, 482–487 (2005). (10.1016/j.jcis.2004.09.009) / J. Colloid Interface Sci. by KH Ko (2005)
  28. Fabregat-Santiago, F. et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. J. Am. Chem. Soc. 130, 11312–11316 (2008). (10.1021/ja710899q) / J. Am. Chem. Soc. by F Fabregat-Santiago (2008)
  29. Lee, S. et al. Nb-doped TiO2: a new compact layer material for TiO2 dye-sensitized solar cells. J. Phys. Chem. C 113, 6878–6882 (2009). (10.1021/jp9002017) / J. Phys. Chem. C by S Lee (2009)
  30. Lü, X. et al. Improved‐performance dye‐sensitized solar cells using Nb‐doped TiO2 electrodes: efficient electron injection and transfer. Adv. Funct. Mater. 20, 509–515 (2010). (10.1002/adfm.200901292) / Adv. Funct. Mater. by X Lü (2010)
  31. Nah, Y. C., Paramasivam, I. & Schmuki, P. Doped TiO2 and TiO2 nanotubes: synthesis and applications. Chemphyschem. 11, 2698–2713 (2010). (10.1002/cphc.201000276) / Chemphyschem. by YC Nah (2010)
  32. Zhang, X., Liu, F., Huang, Q.-L., Zhou, G. & Wang, Z.-S. Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J. Phys. Chem. C 115, 12665–12671 (2011). (10.1021/jp201853c) / J. Phys. Chem. C by X Zhang (2011)
  33. Zhang, X., Wang, S.-T. & Wang, Z.-S. Effect of metal-doping in TiO2 on fill factor of dye-sensitized solar cells. Appl. Phys. Lett. 99, 113503 (2011). (10.1063/1.3635788) / Appl. Phys. Lett. by X Zhang (2011)
  34. Duan, Y. et al. Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888–8893 (2012). (10.1021/jp212517k) / J. Phys. Chem. C by Y Duan (2012)
  35. Cho, I. S. et al. Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 4, 1723 (2013). (10.1038/ncomms2729) / Nat. Commun. by IS Cho (2013)
  36. Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). (10.1038/ncomms3885) / Nat. Commun. by T Leijtens (2013)
  37. Pathak, S. K. et al. Performance and stability enhancement of dye‐sensitized and Perovskite solar cells by Al doping of TiO2 . Adv. Funct Mater. 24, 6046–6055 (2014). (10.1002/adfm.201401658) / Adv. Funct Mater. by SK Pathak (2014)
  38. Kopidakis, N., Benkstein, K. D., van de Lagemaat, J. & Frank, A. J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307–11315 (2003). (10.1021/jp0304475) / J. Phys. Chem. B by N Kopidakis (2003)
  39. Olson, C. L., Nelson, J. & Islam, M. S. Defect chemistry, surface structures, and lithium insertion in anatase TiO2 . J. Phys. Chem. B. 110, 9995–10001 (2006). (10.1021/jp057261l) / J. Phys. Chem. B. by CL Olson (2006)
  40. Abate, A. et al. Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013). (10.1039/c2cp44397j) / Phys. Chem. Chem. Phys. by A Abate (2013)
  41. Abate, A. et al. Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. J. Am. Chem. Soc. 135, 13538–13548 (2013). (10.1021/ja406230f) / J. Am. Chem. Soc. by A Abate (2013)
  42. Kim, D. H. et al. Niobium doping effects on TiO2 mesoscopic electron transport layer-based Perovskite solar cells. ChemSusChem 8, 2392–2398 (2015). (10.1002/cssc.201403478) / ChemSusChem by DH Kim (2015)
  43. Xing, G. et al. Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction. Small 11, 3606–3613 (2015). (10.1002/smll.201403719) / Small by G Xing (2015)
  44. Wojciechowski, K. et al. Heterojunction modification for highly efficient organic–inorganic Perovskite solar cells. ACS Nano 8, 12701–12709 (2014). (10.1021/nn505723h) / ACS Nano by K Wojciechowski (2014)
  45. Guillén, E., Ramos, F. J., Anta, J. A. & Ahmad, S. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques. J. Phys. Chem. C 118, 22913–22922 (2014). (10.1021/jp5069076) / J. Phys. Chem. C by E Guillén (2014)
  46. Heo, J. H. et al. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 15, 530–539 (2015). (10.1016/j.nanoen.2015.05.014) / Nano Energy by JH Heo (2015)
  47. Södergren, S. et al. Lithium intercalation in nanoporous anatase TiO2 studied with XPS. J. Phys. Chem. B 101, 3087–3090 (1997). (10.1021/jp9639399) / J. Phys. Chem. B by S Södergren (1997)
  48. Bouattour, S. et al. Li‐doped nanosized TiO2 powder with enhanced photocalatylic acivity under sunlight irradiation. Appl. Organomet. Chem. 24, 692–699 (2010). (10.1002/aoc.1668) / Appl. Organomet. Chem. by S Bouattour (2010)
  49. Westermark, K. et al. Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy. Chem. Phys. 285, 157–165 (2002). (10.1016/S0301-0104(02)00699-7) / Chem. Phys. by K Westermark (2002)
  50. Cappel, U. B. et al. Characterization of the interface properties and processes in solid state dye-sensitized solar cells employing a perylene sensitizer. J. Phys. Chem. C 115, 4345–4358 (2011). (10.1021/jp111466h) / J. Phys. Chem. C by UB Cappel (2011)
  51. Abate, A. et al. An organic ‘Donor‐Free’ dye with enhanced open‐circuit voltage in solid‐state sensitized solar cells. Adv. Energy Mater. 4, 1400166 (2014). (10.1002/aenm.201400166) / Adv. Energy Mater. by A Abate (2014)
  52. Barnes, P. R. et al. Interpretation of optoelectronic transient and charge extraction measurements in dye‐sensitized solar cells. Adv. Mater. 25, 1881–1922 (2013). (10.1002/adma.201201372) / Adv. Mater. by PR Barnes (2013)
  53. Dloczik, L. et al. Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B. 101, 10281–10289 (1997). (10.1021/jp972466i) / J. Phys. Chem. B. by L Dloczik (1997)
  54. Krüger, J., Plass, R., Grätzel, M., Cameron, P. J. & Peter, L. M. Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B. 107, 7536–7539 (2003). (10.1021/jp0348777) / J. Phys. Chem. B. by J Krüger (2003)
  55. Han, Y. S. & Kim, J. T. Enhanced performance of dye-sensitized solar cells with surface-treated titanium dioxides. Mol. Cryst. Liq. Cryst. 565, 138–146 (2012). (10.1080/15421406.2012.693307) / Mol. Cryst. Liq. Cryst. by YS Han (2012)
  56. Marinova, N. et al. Light harvesting and charge recombination in CH3NH3PbI3 Perovskite solar cells studied by hole transport layer thickness variation. ACS Nano 9, 4200–4209 (2015). (10.1021/acsnano.5b00447) / ACS Nano by N Marinova (2015)
  57. Lee, Y. H. et al. Unraveling the reasons for efficiency loss in Perovskite solar cells. Adv. Funct. Mater. 25, 3925–3933 (2015). (10.1002/adfm.201501024) / Adv. Funct. Mater. by YH Lee (2015)
  58. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014). (10.1021/nl501838y) / Nano Lett. by Q Chen (2014)
  59. Abate, A., Staff, D. R., Hollman, D. J., Snaith, H. J. & Walker, A. B. Influence of ionizing dopants on charge transport in organic semiconductors. Phys. Chem. Chem. Phys. 16, 1132–1138 (2014). (10.1039/C3CP53834F) / Phys. Chem. Chem. Phys. by A Abate (2014)
Dates
Type When
Created 9 years, 7 months ago (Jan. 13, 2016, 6:44 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 6:53 a.m.)
Indexed 3 days, 18 hours ago (Aug. 30, 2025, 1:01 p.m.)
Issued 9 years, 7 months ago (Jan. 13, 2016)
Published 9 years, 7 months ago (Jan. 13, 2016)
Published Online 9 years, 7 months ago (Jan. 13, 2016)
Funders 0

None

@article{Giordano_2016, title={Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10379}, DOI={10.1038/ncomms10379}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Giordano, Fabrizio and Abate, Antonio and Correa Baena, Juan Pablo and Saliba, Michael and Matsui, Taisuke and Im, Sang Hyuk and Zakeeruddin, Shaik M. and Nazeeruddin, Mohammad Khaja and Hagfeldt, Anders and Graetzel, Michael}, year={2016}, month=jan }