Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractEstablishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

Bibliography

Wu, Y., Chew, A. R., Rojas, G. A., Sini, G., Haugstad, G., Belianinov, A., Kalinin, S. V., Li, H., Risko, C., Brédas, J.-L., Salleo, A., & Frisbie, C. D. (2016). Strain effects on the work function of an organic semiconductor. Nature Communications, 7(1).

Authors 12
  1. Yanfei Wu (first)
  2. Annabel R. Chew (additional)
  3. Geoffrey A. Rojas (additional)
  4. Gjergji Sini (additional)
  5. Greg Haugstad (additional)
  6. Alex Belianinov (additional)
  7. Sergei V. Kalinin (additional)
  8. Hong Li (additional)
  9. Chad Risko (additional)
  10. Jean-Luc Brédas (additional)
  11. Alberto Salleo (additional)
  12. C. Daniel Frisbie (additional)
References 45 Referenced 84
  1. Fischetti, M. V. & Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996). (10.1063/1.363052) / J. Appl. Phys. by MV Fischetti (1996)
  2. Ishikawa, Y. et al. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett. 82, 2044–2046 (2003). (10.1063/1.1564868) / Appl. Phys. Lett. by Y Ishikawa (2003)
  3. Kuo, C. P., Vong, S. K., Cohen, R. M. & Stringfellow, G. B. Effect of mismatch strain on band gap in III-V semiconductors. J. Appl. Phys. 57, 5428–5432 (1985). (10.1063/1.334817) / J. Appl. Phys. by CP Kuo (1985)
  4. Roberts, M. et al. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 5, 388–393 (2006). (10.1038/nmat1606) / Nat. Mater. by M Roberts (2006)
  5. Sun, Y., Thompson, S. E. & Nishida, T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101, 104503 (2007). (10.1063/1.2730561) / J. Appl. Phys. by Y Sun (2007)
  6. Lee, M., Fitzgerald, E., Bulsara, M., Currie, M. & Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2005). (10.1063/1.1819976) / J. Appl. Phys. by M Lee (2005)
  7. Welser, J., Hoyt, J. L. & Gibbons, J. F. Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors. IEEE Electron. Device Lett. 15, 100–102 (1994). (10.1109/55.285389) / IEEE Electron. Device Lett. by J Welser (1994)
  8. Kido, J., Kimura, M. & Nagai, K. Multilayer white light-emitting organic electroluminescent device. Science 267, 1332–1334 (1995). (10.1126/science.267.5202.1332) / Science by J Kido (1995)
  9. Kulkarni, A., Tonzola, C., Babel, A. & Jenekhe, S. Electron transport materials for organic light-emitting diodes. Chem. Mater. 16, 4556–4573 (2004). (10.1021/cm049473l) / Chem. Mater. by A Kulkarni (2004)
  10. Dimitrakopoulos, C. D. & Malenfant, P. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002). (10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9) / Adv. Mater. by CD Dimitrakopoulos (2002)
  11. Hains, A., Liang, Z., Woodhouse, M. & Gregg, B. Molecular semiconductors in organic photovoltaic cells. Chem. Rev. 110, 6689–6735 (2010). (10.1021/cr9002984) / Chem. Rev. by A Hains (2010)
  12. Peumans, P., Uchida, S. & Forrest, S. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003). (10.1038/nature01949) / Nature by P Peumans (2003)
  13. Giri, G. et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2011). (10.1038/nature10683) / Nature by G Giri (2011)
  14. Briseno, A. et al. High-performance organic single-crystal transistors on flexible substrates. Adv. Mater. 18, 2320–2324 (2006). (10.1002/adma.200600634) / Adv. Mater. by A Briseno (2006)
  15. Jedaa, A. & Halik, M. Toward strain resistant flexible organic thin film transistors. Appl. Phys. Lett. 95, 103309 (2009). (10.1063/1.3216587) / Appl. Phys. Lett. by A Jedaa (2009)
  16. Sekitani, T. et al. Bending experiment on pentacene field-effect transistors on plastic films. Appl. Phys. Lett. 86, 073511 (2005). (10.1063/1.1868868) / Appl. Phys. Lett. by T Sekitani (2005)
  17. Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015–1022 (2010). (10.1038/nmat2896) / Nat. Mater. by T Sekitani (2010)
  18. Sokolov, A., Cao, Y., Johnson, O. & Bao, Z. Mechanistic considerations of bending-strain effects within organic semiconductors on polymer dielectrics. Adv. Func. Mater. 22, 175–183 (2012). (10.1002/adfm.201101418) / Adv. Func. Mater. by A Sokolov (2012)
  19. Yang, C. et al. Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors. Appl. Phys. Lett. 92, 243305 (2008). (10.1063/1.2948862) / Appl. Phys. Lett. by C Yang (2008)
  20. Cour, I. et al. Origin of stress and enhanced carrier transport in solution-cast organic semiconductor films. J. Appl. Phys. 114, 093501 (2013). (10.1063/1.4820384) / J. Appl. Phys. by I Cour (2013)
  21. Kowarik, S. et al. Real-time observation of structural and orientational transitions during growth of organic thin films. Phys. Rev. Lett. 96, 125504 (2006). (10.1103/PhysRevLett.96.125504) / Phys. Rev. Lett. by S Kowarik (2006)
  22. Mativetsky, J., Burke, S., Fostner, S. & Grutter, P. Templated growth of 3,4,9,10-perylenetetracarboxylic dianhydride molecules on a nanostructured insulator. Nanotechnology 18, 105303 (2007). (10.1088/0957-4484/18/10/105303) / Nanotechnology by J Mativetsky (2007)
  23. Murakami, Y. et al. Microstructural study of the polymorphic transformation in pentacene thin films. Phys. Rev. Lett. 103, 146102 (2009). (10.1103/PhysRevLett.103.146102) / Phys. Rev. Lett. by Y Murakami (2009)
  24. Okada, Y., Sakai, K., Uemura, T., Nakazawa, Y. & Takeya, J. Charge transport and Hall effect in rubrene single-crystal transistors under high pressure. Phys. Rev. B 84, 245308 (2011). (10.1103/PhysRevB.84.245308) / Phys. Rev. B by Y Okada (2011)
  25. Schatschneider, B., Monaco, S., Tkatchenko, A. & Liang, J. J. Understanding the structure and electronic properties of molecular crystals under pressure: application of dispersion corrected DFT to oligoacenes. J. Phys. Chem. A 117, 8323–8331 (2013). (10.1021/jp406573n) / J. Phys. Chem. A by B Schatschneider (2013)
  26. Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004). (10.1103/PhysRevLett.93.086602) / Phys. Rev. Lett. by V Podzorov (2004)
  27. Henn, D. E., Williams, W. G. & Gibbons, D. J. Crystallographic data for an orthorhombic form of rubrene. J. Appl. Cryst. 4, 256 (1971). (10.1107/S0021889871006812) / J. Appl. Cryst. by DE Henn (1971)
  28. Jurchescu, O. D., Meetsma, A. & Palstra, T. T. M. Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Cryst B62, 330–334 (2006). (10.1107/S0108768106003053) / Acta Cryst by OD Jurchescu (2006)
  29. Haas, S. Crystal structure analysis and trap spectroscopy in organic semiconducting crystals. PhD Doctoral and Habilitation Theses, ETH, Zürich 16657, 28–33 (2006).
  30. Palermo, V., Palma, M. & Samorì, P. Electronic characterization of organic thin films by kelvin probe force microscopy. Adv. Mater. 18, 145–164 (2006). (10.1002/adma.200501394) / Adv. Mater. by V Palermo (2006)
  31. Ellison, D. J., Lee, B., Podzorov, V. & Frisbie, C. D. Surface potential mapping of SAM‐functionalized organic semiconductors by Kelvin probe force microscopy. Adv. Mater. 23, 502–507 (2011). (10.1002/adma.201003122) / Adv. Mater. by DJ Ellison (2011)
  32. Wu, Y., Haugstad, G. & Frisbie, C. D. Electronic polarization at pentacene/polymer dielectric interfaces: imaging surface potentials and contact potential differences as function of substrate type, growth temperature, and pentacene microstructure. J. Phys. Chem. C 118, 2487–2497 (2014). (10.1021/jp409768j) / J. Phys. Chem. C by Y Wu (2014)
  33. Lee, B., Choi, T., Cheong, S. & Podzorov, V. Nanoscale conducting channels at the surface of organic semiconductors formed by decoration of molecular steps with self-assembled molecules. Adv. Func. Mater. 19, 3726–3730 (2009). (10.1002/adfm.200901525) / Adv. Func. Mater. by B Lee (2009)
  34. Reyes-Martinez, M., Ramasubramaniam, A., Briseno, A. & Crosby, A. The intrinsic mechanical properties of rubrene single crystals. Adv. Mater. 24, 5548–5552 (2012). (10.1002/adma.201201749) / Adv. Mater. by M Reyes-Martinez (2012)
  35. Ibragimov, K. h. I. & Korol'kov, V. A. Temperature dependence of the work function of metals and binary alloys. Inorg. Mater. 37, 567–572 (2001). (10.1023/A:1017556031226) / Inorg. Mater. by KhI Ibragimov (2001)
  36. Leu, P. W., Svizhenko, A. & Cho, K. Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys. Rev. B 77, 235305 (2008). (10.1103/PhysRevB.77.235305) / Phys. Rev. B by PW Leu (2008)
  37. Unal, K. & Wickramasinghe, H. K. Nanoscale quantitative stress mapping with atomic force microscopy. Appl. Phys. Lett. 90, 113111 (2007). (10.1063/1.2712494) / Appl. Phys. Lett. by K Unal (2007)
  38. Choi, S.-M., Jhi, S.-H. & Son, Y.-W. Effects of strain on electronic properties of graphene. Phys. Rev. B 81, 081407 (2010). (10.1103/PhysRevB.81.081407) / Phys. Rev. B by S-M Choi (2010)
  39. Peng, X., Tang, F. & Copple, A. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study. J. Phys. Condens. Mat. 24, 075501 (2012). (10.1088/0953-8984/24/7/075501) / J. Phys. Condens. Mat. by X Peng (2012)
  40. Robinson, P. M. & Scott, H. G. Plastic deformation of anthracene single crystals. Acta Metall. 15, 1581–1590 (1967). (10.1016/0001-6160(67)90131-9) / Acta Metall. by PM Robinson (1967)
  41. Li, W. & Li, D. Y. In situ measurements of simultaneous electronic behavior of Cu and Al induced by mechanical deformation. J. Appl. Phys. 99, 073502 (2006). (10.1063/1.2181300) / J. Appl. Phys. by W Li (2006)
  42. Laudise, R. A., Kloc, C., Simpkins, P. G. & Siegrist, T. Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998). (10.1016/S0022-0248(98)00034-7) / J. Cryst. Growth by RA Laudise (1998)
  43. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (10.1103/PhysRevB.59.1758) / Phys. Rev. B by G Kresse (1999)
Dates
Type When
Created 9 years, 6 months ago (Feb. 1, 2016, 4:49 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 7:03 a.m.)
Indexed 2 weeks, 4 days ago (Aug. 5, 2025, 8:51 a.m.)
Issued 9 years, 6 months ago (Feb. 1, 2016)
Published 9 years, 6 months ago (Feb. 1, 2016)
Published Online 9 years, 6 months ago (Feb. 1, 2016)
Funders 0

None

@article{Wu_2016, title={Strain effects on the work function of an organic semiconductor}, volume={7}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10270}, DOI={10.1038/ncomms10270}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Wu, Yanfei and Chew, Annabel R. and Rojas, Geoffrey A. and Sini, Gjergji and Haugstad, Greg and Belianinov, Alex and Kalinin, Sergei V. and Li, Hong and Risko, Chad and Brédas, Jean-Luc and Salleo, Alberto and Frisbie, C. Daniel}, year={2016}, month=feb }