Abstract
AbstractRough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.
References
54
Referenced
426
-
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).
(
10.1038/35104599
) / Nature by MS Dresselhaus (2001) -
Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
(
10.1126/science.1212741
) / Science by B Dunn (2011) -
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by JM Tarascon (2001) -
Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013).
(
10.1039/c3cs60177c
) / Chem. Soc. Rev. by H Kim (2013) -
Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).
(
10.1039/C3EE40795K
) / Energy Environ. Sci. by W Xu (2014) -
Pieczonka, N. P. W. et al. Impact of lithium bis(oxalate)borate electrolyte additive on the performance of high-voltage spinel/graphite Li-ion batteries. J. Phys. Chem. C 117, 22603–22612 (2013).
(
10.1021/jp408717x
) / J. Phys. Chem. C by NPW Pieczonka (2013) -
Li, B., Xu, M., Li, T., Li, W. & Hu, S. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries. Electrochem. Commun. 17, 92–95 (2012).
(
10.1016/j.elecom.2012.02.016
) / Electrochem. Commun. by B Li (2012) -
Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423–1439 (2002).
(
10.1016/S0013-4686(01)00858-1
) / Electrochim. Acta by D Aurbach (2002) -
Lu, Y., Das, S. K., Moganty, S. S. & Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012).
(
10.1002/adma.201201953
) / Adv. Mater. by Y Lu (2012) -
Lu, Y., Korf, K., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 126, 498–502 (2014).
(
10.1002/ange.201307137
) / Angew. Chem. Int. Ed. by Y Lu (2014) -
Bouchet, R. et al. efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).
(
10.1038/nmat3602
) / Nat. Mater. by R Bouchet (2013) -
Gurevitch, I. et al. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013).
(
10.1149/2.117309jes
) / J. Electrochem. Soc. by I Gurevitch (2013) -
Khurana, R., Schaefer, J. L., Archer, L. A & Coates, G. W. Suppression of lithium dendrite growth using crosslinked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).
(
10.1021/ja502133j
) / J. Am. Chem. Soc. by R Khurana (2014) -
Tu, Z., Kambe, Y., Lu, Y. & Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater 4, 1300654 (2014).
(
10.1002/aenm.201300654
) / Adv. Energy Mater by Z Tu (2014) -
Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014).
(
10.1149/2.085405jes
) / J. Electrochem. Soc. by MD Tikekar (2014) -
Fuller, J., Breda, A. C. & Carlin, R. T. Ionic liquid-polymer gel electrolytes. J. Electrochem. Soc. 144, 8–11 (1997).
(
10.1149/1.1838106
) / J. Electrochem. Soc. by J Fuller (1997) -
Zhang, J., Sun, B., Huang, X., Chen, S. & Wang, G. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 4, 6007 (2014).
(
10.1038/srep06007
) / Sci. Rep. by J Zhang (2014) -
Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006).
(
10.1016/j.eurpolymj.2005.09.017
) / Eur. Polym. J. by AM Stephan (2006) -
Cheng, X.-B., Peng, H.-J., Huang, J.-Q., Wei, F. & Zhang, Q. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 10, 4257–4263 (2014).
(
10.1002/smll.201401837
) / Small by X-B Cheng (2014) -
Hallinan, D. T., Mullin, S. A., Stone, G. M. & Balsara, N. P. Lithium metal stability in batteries with block copolymer electrolytes. J. Electrochem. Soc. 160, A464–A470 (2013).
(
10.1149/2.030303jes
) / J. Electrochem. Soc. by DT Hallinan (2013) -
Hallinan, D. T. & Balsara, N. P. Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503–525 (2013).
(
10.1146/annurev-matsci-071312-121705
) / Annu. Rev. Mater. Res. by DT Hallinan (2013) -
Singh, M. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40, 4578–4585 (2007).
(
10.1021/ma0629541
) / Macromolecules by M Singh (2007) -
Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).
(
10.1038/28818
) / Nature by F Croce (1998) -
Tang, C., Hackenberg, K., Fu, Q., Ajayan, P. M. & Ardebili, H. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 12, 1152–1156 (2012).
(
10.1021/nl202692y
) / Nano Lett. by C Tang (2012) -
Bertasi, F. et al. Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly(ethylene glycol) 400. Electrochim. Acta 175, 113–123 (2015).
(
10.1016/j.electacta.2015.03.149
) / Electrochim. Acta by F Bertasi (2015) -
Agrawal, A., Choudhury, S. & Archer, L. A. A highly conductive, non-flammable polymer-nanoparticle hybrid electrolyte. RSC Adv. 5, 20800 (2015).
(
10.1039/C5RA01031D
) / RSC Adv. by A Agrawal (2015) -
Croce, F., Sacchetti, S. & Scrosati, B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 162, 685–689 (2006).
(
10.1016/j.jpowsour.2006.07.038
) / J. Power Sources by F Croce (2006) -
Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 314, 1107–1110 (2006).
(
10.1126/science.1130557
) / Science by AC Balazs (2006) -
Krishnamoorti, R. Strategies for dispersing nanoparticles in polymers. MRS Bull. 32, 341–347 (2007).
(
10.1557/mrs2007.233
) / MRS Bull. by R Krishnamoorti (2007) -
Smith, G. D. & Bedrov, D. Dispersing nanoparticles in a polymer matrix: are long, dense polymer tethers really necessary? Langmuir 25, 11239–11243 (2009).
(
10.1021/la902329v
) / Langmuir by GD Smith (2009) -
Chandran, S., Begam, N., Padmanabhan, V. & Basu, J. K. Confinement enhances dispersion in nanoparticle-polymer blend films. Nat. Commun. 5, 3697 (2014).
(
10.1038/ncomms4697
) / Nat. Commun. by S Chandran (2014) -
Patra, T. K. & Singh, J. K. Polymer directed aggregation and dispersion of anisotropic nanoparticles. Soft Matter 10, 1823–1830 (2014).
(
10.1039/c3sm52216d
) / Soft Matter by TK Patra (2014) -
Srivastava, S., Agarwal, P. & Archer, L. A. Tethered nanoparticle-polymer composites: phase stability and curvature. Langmuir 28, 6276–6281 (2012).
(
10.1021/la2049234
) / Langmuir by S Srivastava (2012) -
Litschauer, M., Peterlik, H. & Neouze, M.-A. Nanoparticles/ionic linkers of different lengths: short-range order evidenced by small-angle X-ray scattering. J. Phys. Chem. C 113, 6547–6552 (2009).
(
10.1021/jp900179f
) / J. Phys. Chem. C by M Litschauer (2009) -
Litschauer, M., Puchberger, M., Peterlik, H. & Neouze, M.-A. Anion metathesis in ionic silica nanoparticle networks. J. Mater. Chem. 20, 1269–1276 (2010).
(
10.1039/B915050A
) / J. Mater. Chem. by M Litschauer (2010) -
Moganty, S. S. et al. Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels. Chem. Mater. 24, 1386–1392 (2012).
(
10.1021/cm300424v
) / Chem. Mater. by SS Moganty (2012) -
Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).
(
10.1149/2.030203jes
) / J. Electrochem. Soc. by GM Stone (2012) -
Liu, S. et al. Lithium dendrite formation in li/poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells. J. Electrochem. Soc. 157, A1092 (2010).
(
10.1149/1.3473790
) / J. Electrochem. Soc. by S Liu (2010) -
Liu, S. et al. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li. J. Power Sources 195, 6847–6853 (2010).
(
10.1016/j.jpowsour.2010.04.027
) / J. Power Sources by S Liu (2010) -
Schaefer, J. L., Moganty, S. S., Yanga, D. A. & Archer, L. A. Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094 (2011).
(
10.1039/c0jm04171h
) / J. Mater. Chem. by JL Schaefer (2011) -
Georén, P. & Lindbergh, G. On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes. J. Power Sources 124, 213–220 (2003).
(
10.1016/S0378-7753(03)00739-0
) / J. Power Sources by P Georén (2003) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotechnol. by G Zheng (2014) -
Luo, W. et al. A thermally conductive separator for stable Li metal anodes. Nano Lett. 15, 6149–6154 (2015).
(
10.1021/acs.nanolett.5b02432
) / Nano Lett. by W Luo (2015) -
Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
(
10.1038/ncomms8436
) / Nat. Commun. by W Li (2015) -
Pires, J. et al. Role of propane sultone as additive to improve the performance of lithium-rich cathode material at high potential. RSC Adv. 5, 42088–42094 (2015).
(
10.1039/C5RA05650K
) / RSC Adv. by J Pires (2015) -
Guo, J., Wen, Z., Wu, M., Jin, J. & Liu, Y. Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015).
(
10.1016/j.elecom.2014.12.008
) / Electrochem. Commun. by J Guo (2015) -
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015) -
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).
(
10.1021/ja312241y
) / J. Am. Chem. Soc. by F Ding (2013) -
Rosso, M., Gobron, T., Brissot, C., Chazalviel, J.-N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97-98, 804–806 (2001).
(
10.1016/S0378-7753(01)00734-0
) / J. Power Sources by M Rosso (2001) -
Liu, S. et al. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J. Power Sources 196, 7681–7686 (2011).
(
10.1016/j.jpowsour.2011.04.001
) / J. Power Sources by S Liu (2011) -
Sannier, L., Bouchet, R., Rosso, M. & Tarascon, J. M. Evaluation of GPE performances in lithium metal battery technology by means of simple polarization tests. J. Power Sources 158, 564–570 (2006).
(
10.1016/j.jpowsour.2005.09.026
) / J. Power Sources by L Sannier (2006) -
Schaefer, J. L., Yanga, D. A. & Archer, L. A. High Lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).
(
10.1021/cm303091j
) / Chem. Mater. by JL Schaefer (2013)
Dates
Type | When |
---|---|
Created | 9 years, 8 months ago (Dec. 4, 2015, 5:09 a.m.) |
Deposited | 1 year, 2 months ago (June 12, 2024, 5:22 p.m.) |
Indexed | 1 week, 1 day ago (Aug. 12, 2025, 5:50 p.m.) |
Issued | 9 years, 8 months ago (Dec. 4, 2015) |
Published | 9 years, 8 months ago (Dec. 4, 2015) |
Published Online | 9 years, 8 months ago (Dec. 4, 2015) |
@article{Choudhury_2015, title={A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms10101}, DOI={10.1038/ncomms10101}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Choudhury, Snehashis and Mangal, Rahul and Agrawal, Akanksha and Archer, Lynden A.}, year={2015}, month=dec }