Crossref journal-article
Springer Science and Business Media LLC
Nature Chemical Biology (297)
Bibliography

Tsvetkov, A. S., Arrasate, M., Barmada, S., Ando, D. M., Sharma, P., Shaby, B. A., & Finkbeiner, S. (2013). Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nature Chemical Biology, 9(9), 586–592.

Authors 7
  1. Andrey S Tsvetkov (first)
  2. Montserrat Arrasate (additional)
  3. Sami Barmada (additional)
  4. D Michael Ando (additional)
  5. Punita Sharma (additional)
  6. Benjamin A Shaby (additional)
  7. Steven Finkbeiner (additional)
References 36 Referenced 165
  1. Han, I., You, Y., Kordower, J.H., Brady, S.T. & Morfini, G.A. Differential vulnerability of neurons in Huntington's disease: the role of cell type–specific features. J. Neurochem. 113, 1073–1091 (2010). (10.1111/j.1471-4159.2010.06672.x) / J. Neurochem. by I Han (2010)
  2. Taylor, J.P., Hardy, J. & Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002). (10.1126/science.1067122) / Science by JP Taylor (2002)
  3. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003). (10.1126/science.1079469) / Science by R Kayed (2003)
  4. Miller, J. et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol. 7, 925–934 (2011). (10.1038/nchembio.694) / Nat. Chem. Biol. by J Miller (2011)
  5. Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006). (10.1126/science.1124514) / Science by T Gidalevitz (2006)
  6. Mitra, S., Tsvetkov, A.S. & Finkbeiner, S. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in Huntington disease. J. Biol. Chem. 284, 4398–4403 (2009). (10.1074/jbc.M806269200) / J. Biol. Chem. by S Mitra (2009)
  7. Tsvetkov, A.S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl. Acad. Sci. USA 107, 16982–16987 (2010). (10.1073/pnas.1004498107) / Proc. Natl. Acad. Sci. USA by AS Tsvetkov (2010)
  8. Takahashi, M. & Ono, Y. Pulse-chase analysis of protein kinase C. Methods Mol. Biol. 233, 163–170 (2003). / Methods Mol. Biol. by M Takahashi (2003)
  9. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006). (10.1038/nbt1191) / Nat. Biotechnol. by NG Gurskaya (2006)
  10. Arrasate, M. & Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA 102, 3840–3845 (2005). (10.1073/pnas.0409777102) / Proc. Natl. Acad. Sci. USA by M Arrasate (2005)
  11. Leutenegger, A. et al. It's cheap to be colorful. Anthozoans show a slow turnover of GFP-like proteins. FEBS J. 274, 2496–2505 (2007). (10.1111/j.1742-4658.2007.05785.x) / FEBS J. by A Leutenegger (2007)
  12. Dantuma, N.P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M.G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18, 538–543 (2000). (10.1038/75406) / Nat. Biotechnol. by NP Dantuma (2000)
  13. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000). (10.1146/annurev.neuro.23.1.217) / Annu. Rev. Neurosci. by HY Zoghbi (2000)
  14. DiFiglia, M. Clinical Genetics, II. Huntington's disease: from the gene to pathophysiology. Am. J. Psychiatry 154, 1046 (1997). (10.1176/ajp.154.8.1046) / Am. J. Psychiatry by M DiFiglia (1997)
  15. Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. USA 110, 2366–2370 (2013). (10.1073/pnas.1221891110) / Proc. Natl. Acad. Sci. USA by K Sathasivam (2013)
  16. Wellington, C.L. & Hayden, M.R. Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet. 57, 1–10 (2000). (10.1034/j.1399-0004.2000.570101.x) / Clin. Genet. by CL Wellington (2000)
  17. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996). (10.1016/S0092-8674(00)81369-0) / Cell by L Mangiarini (1996)
  18. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004). (10.1038/nature02998) / Nature by M Arrasate (2004)
  19. Persichetti, F. et al. Differential expression of normal and mutant Huntington's disease gene alleles. Neurobiol. Dis. 3, 183–190 (1996). (10.1006/nbdi.1996.0018) / Neurobiol. Dis. by F Persichetti (1996)
  20. Dyer, R.B. & McMurray, C.T. Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat. Genet. 29, 270–278 (2001). (10.1038/ng745) / Nat. Genet. by RB Dyer (2001)
  21. Kaytor, M.D., Wilkinson, K.D. & Warren, S.T. Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. J. Neurochem. 89, 962–973 (2004). (10.1111/j.1471-4159.2004.02376.x) / J. Neurochem. by MD Kaytor (2004)
  22. Roscic, A., Baldo, B., Crochemore, C., Marcellin, D. & Paganetti, P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J. Neurochem. 119, 398–407 (2011). (10.1111/j.1471-4159.2011.07435.x) / J. Neurochem. by A Roscic (2011)
  23. Wu, J.C. et al. The regulation of N-terminal Huntingtin (Htt552) accumulation by Beclin1. Acta Pharmacol. Sin. 33, 743–751 (2012). (10.1038/aps.2012.14) / Acta Pharmacol. Sin. by JC Wu (2012)
  24. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11404–11409 (1999). (10.1073/pnas.96.20.11404) / Proc. Natl. Acad. Sci. USA by A Kazantsev (1999)
  25. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000). (10.1016/S0962-8924(00)01852-3) / Trends Cell Biol. by RR Kopito (2000)
  26. Hartl, F.U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009). (10.1038/nsmb.1591) / Nat. Struct. Mol. Biol. by FU Hartl (2009)
  27. Snell, R.G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat. Genet. 4, 393–397 (1993). (10.1038/ng0893-393) / Nat. Genet. by RG Snell (1993)
  28. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998). (10.1016/S0092-8674(00)81782-1) / Cell by F Saudou (1998)
  29. Matsumoto, G., Kim, S. & Morimoto, R.I. Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J. Biol. Chem. 281, 4477–4485 (2006). (10.1074/jbc.M509201200) / J. Biol. Chem. by G Matsumoto (2006)
  30. Lin, C.H. et al. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum. Mol. Genet. 10, 137–144 (2001). (10.1093/hmg/10.2.137) / Hum. Mol. Genet. by CH Lin (2001)
  31. Colby, D.W., Cassady, J.P., Lin, G.C., Ingram, V.M. & Wittrup, K.D. Stochastic kinetics of intracellular huntingtin aggregate formation. Nat. Chem. Biol. 2, 319–323 (2006). (10.1038/nchembio792) / Nat. Chem. Biol. by DW Colby (2006)
  32. Slow, E.J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl. Acad. Sci. USA 102, 11402–11407 (2005). (10.1073/pnas.0503634102) / Proc. Natl. Acad. Sci. USA by EJ Slow (2005)
  33. Tsakiri, E.N. et al. Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell http://dx.doi.org/10.1111/acel.12111 (2013). (10.1111/acel.12111)
  34. Riley, B.E. et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191, 537–552 (2010). (10.1083/jcb.201005012) / J. Cell Biol. by BE Riley (2010)
  35. Zhang, Q.C. et al. A compact β model of huntingtin toxicity. J. Biol. Chem. 286, 8188–8196 (2011). (10.1074/jbc.M110.192013) / J. Biol. Chem. by QC Zhang (2011)
  36. Bilimoria, P.M. & Bonni, A. Cultures of cerebellar granule neurons. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot5107 (2008). (10.1101/pdb.prot5107)
Dates
Type When
Created 12 years, 1 month ago (July 21, 2013, 2 p.m.)
Deposited 1 year, 3 months ago (May 15, 2024, 12:11 a.m.)
Indexed 1 week, 2 days ago (Aug. 26, 2025, 2:30 a.m.)
Issued 12 years, 1 month ago (July 21, 2013)
Published 12 years, 1 month ago (July 21, 2013)
Published Online 12 years, 1 month ago (July 21, 2013)
Published Print 12 years ago (Sept. 1, 2013)
Funders 0

None

@article{Tsvetkov_2013, title={Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration}, volume={9}, ISSN={1552-4469}, url={http://dx.doi.org/10.1038/nchembio.1308}, DOI={10.1038/nchembio.1308}, number={9}, journal={Nature Chemical Biology}, publisher={Springer Science and Business Media LLC}, author={Tsvetkov, Andrey S and Arrasate, Montserrat and Barmada, Sami and Ando, D Michael and Sharma, Punita and Shaby, Benjamin A and Finkbeiner, Steven}, year={2013}, month=jul, pages={586–592} }