Crossref
journal-article
Springer Science and Business Media LLC
Nature Chemistry (297)
References
39
Referenced
385
-
Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).
(
10.1038/35104634
) / Nature by L Schlapbach (2001) -
Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1130 (2003).
(
10.1126/science.1083440
) / Science by NL Rosi (2003) -
Lin, X., Jia, J., Hubberstey, P., Schröder, M. & Champness, N. R. Hydrogen storage in metal–organic frameworks. CrystEngComm. 9, 438–448 (2007).
(
10.1039/B706207A
) / CrystEngComm. by X Lin (2007) -
Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005); correction 310, 1119 (2005).
(
10.1126/science.1116275
) / Science by G Férey (2005) -
Bhatia, S. K. & Myers, A. L. Optimum conditions for adsorptive storage. Langmuir 22, 1688–1700 (2006).
(
10.1021/la0523816
) / Langmuir by SK Bhatia (2006) -
Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials. Chem. Eur. J. 11, 3521–3529 (2005).
(
10.1002/chem.200401201
) / Chem. Eur. J. by H Chun (2005) -
Luo, J. et al. Hydrogen adsorption in a highly stable porous rare-earth metal–organic framework: sorption properties and neutron diffraction studies. J. Am. Chem. Soc. 130, 9626–9297 (2008).
(
10.1021/ja801411f
) / J. Am. Chem. Soc. by J Luo (2008) -
Lin, X. et al. High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Ed. 45, 7358–7364 (2006).
(
10.1002/anie.200601991
) / Angew. Chem. Int. Ed. by X Lin (2006) -
Dincă, M. et al. Observation of Cu2+-H2 interactions in a fully desolvated sodalite-type metal–organic framework. Angew. Chem. Int. Ed. 46, 1419–1422 (2007).
(
10.1002/anie.200604362
) / Angew. Chem. Int. Ed. by M Dincă (2007) -
Lin, X. et al. High capacity hydrogen adsorption in Cu(ii) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).
(
10.1021/ja806624j
) / J. Am. Chem. Soc. by X Lin (2009) -
Zhao, X. et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal–organic frameworks. Science 306, 1012–1015 (2004).
(
10.1126/science.1101982
) / Science by X Zhao (2004) -
Choi, H. J., Dincă, M. & Long, J. R. Broadly hysteretic H2 adsorption in the microporous metal–organic framework Co(1, 4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848–7850 (2008).
(
10.1021/ja8024092
) / J. Am. Chem. Soc. by HJ Choi (2008) -
Férey, G. et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003).
(
10.1039/B308903G
) -
Yang, C., Wang, X. & Omary, M. A. Fluorous metal–organic frameworks for high-density gas adsorption. J. Am. Chem. Soc., 129, 15454–15455 (2007).
(
10.1021/ja0775265
) / J. Am. Chem. Soc. by C Yang (2007) -
Mulfort, K. L. & Hupp, J. T. Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007).
(
10.1021/ja0740364
) / J. Am. Chem. Soc. by KL Mulfort (2007) -
Mulfort, K. L. & Hupp, J. T. Alkali metal cation effects on hydrogen uptake and binding in metal–organic frameworks. Inorg. Chem. 47, 7936–7938 (2008).
(
10.1021/ic800700h
) / Inorg. Chem. by KL Mulfort (2008) -
Blomqvist, A., Araújo, C. M., Srepusharawoot, P. & Ahuja, R. Li-decorated metal–organic framework 5: a route to achieving a suitable hydrogen storage medium. Proc. Natl Acad. Sci. USA 104, 20173–20176 (2007).
(
10.1073/pnas.0708603104
) / Proc. Natl Acad. Sci. USA by A Blomqvist (2007) -
Han, S. S. & Goddard, W. A. Lithium-doped metal–organic frameworks for reversible H2 storage at ambient temperature. J. Am. Chem. Soc. 129, 8422–8423 (2007).
(
10.1021/ja072599+
) / J. Am. Chem. Soc. by SS Han (2007) -
Han, S. S. & Goddard, W. A. High H2 storage of hexagonal metal–organic frameworks from first-principles-based grand canonical Monte carlo simulations. J. Phys Chem. C. 112, 13431–13436 (2008).
(
10.1021/jp800832b
) / J. Phys Chem. C. by SS Han (2008) -
Klontzas, E., Mavrandonakis, A., Tylianakis, E. & Froudakis, G. E. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Lett. 8, 1572–1576 (2008).
(
10.1021/nl072941g
) / Nano Lett. by E Klontzas (2008) -
Mavrandonakis, A., Tylianakis, E., Stubos, A. K. & Froudakis, G. E. Why Li doping in MOFs enhances H2 storage capacity? a multi-scale theoretical study. J. Phys. Chem. C. 112, 7290–7294 (2008).
(
10.1021/jp7102098
) / J. Phys. Chem. C. by A Mavrandonakis (2008) -
Dalach, P., Frost, H., Snurr, R. Q. & Ellis, D. E. Enhanced hydrogen uptake and the electronic structure of lithium-doped metal–organic frameworks. J. Phys. Chem. C. 112, 9278–9284 (2008).
(
10.1021/jp801008d
) / J. Phys. Chem. C. by P Dalach (2008) -
Cao, D., Lan, J., Wang, W. & Smit, B. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. Angew. Chem. Int. Ed. 48, 4730–4733 (2009).
(
10.1002/anie.200900960
) / Angew. Chem. Int. Ed. by D Cao (2009) -
Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 36, 7–13 (2003).
(
10.1107/S0021889802022112
) / J. Appl. Crystallogr. by AL Spek (2003) -
Yang, T., Yang, S., Liao, F. & Lin, J. Two isotypic diphosphates LiM2H3(P2O7)2 (M = Ni, Co) containing ferromagnetic zigzag MO6 chains. J. Solid State Chem. 181, 1347–1353 (2006).
(
10.1016/j.jssc.2008.03.006
) / J. Solid State Chem. by T Yang (2006) -
Fuentes-Cabrera, M., Nicholson, D. M. & Sumpter, B. G. Electronic structure and properties of isoreticular metal–organic frameworks: the case of M-IRMOF1 (M = Zn, Cd, Be, Mg, and Ca). J. Chem. Phys. 123, 124713–124718 (2005).
(
10.1063/1.2037587
) / J. Chem. Phys. by M Fuentes-Cabrera (2005) -
Düren, T., Millange, F., Férey, G., Walton K. S. & Snurr R. Q. Calculating geometric surface areas as a characterization tool for metal–organic frameworks. J. Phys. Chem. C. 111, 15350–15356 (2007).
(
10.1021/jp074723h
) / J. Phys. Chem. C. by T Düren (2007) -
Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. & Skid, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).
(
10.1021/ja00051a040
) / J. Am. Chem. Soc. by AK Rappé (1992) - Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. Molecular Theory of Gases and Liquids 2nd edn (Wiley, 1964). / Molecular Theory of Gases and Liquids by JO Hirschfelder (1964)
-
Fletcher, A. J., Cussen, E. J., Bradshaw, D., Rosseinsky, M. J. & Thomas, K. M. Adsorption of gases and vapors on nanoporous Ni2(4,4′-Bipyridine)3(NO3)4 metal–organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics. J. Am. Chem. Soc. 126, 9750–9759 (2004).
(
10.1021/ja0490267
) / J. Am. Chem. Soc. by AJ Fletcher (2004) -
Chen, B. et al. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal–organic framework material. J. Am. Chem. Soc. 130, 6411–6423 (2008).
(
10.1021/ja710144k
) / J. Am. Chem. Soc. by B Chen (2008) -
Jhi, S. H. A theoretical study of nanoporous organic molecules for hydrogen storage. Microporous Mesoporous Mater. 89, 138–142 (2006).
(
10.1016/j.micromeso.2005.10.007
) / Microporous Mesoporous Mater. by SH Jhi (2006) -
Anil Kumar, A. V., Jobic, H. & Bhatia, S. K. Quantum effect induced kinetic molecular sieving of hydrogen and deuterium in microporous materials. Adsorption 13, 501–508 (2007).
(
10.1007/s10450-007-9022-8
) / Adsorption by AV Anil Kumar (2007) - CRC Handbook of Chemistry and Physics 74th edn (CRC, 1993).
-
Yang, S. et al. Enhancement of H2 adsorption in Li+-exchanged coordination framework materials. Chem. Commun. 6108–6110 (2008).
(
10.1039/b814155j
) -
Hafizovic, J. et al. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J. Am. Chem. Soc. 129, 3612–3620 (2007).
(
10.1021/ja0675447
) / J. Am. Chem. Soc. by J Hafizovic (2007) -
Cole, J. H. et al. Thermodynamics of high temperature adsorption of some permanent gases by porous carbons. J. Chem. Soc. Faraday Trans. 70, 2154–2169 (1974).
(
10.1039/f19747002154
) / J. Chem. Soc. Faraday Trans. by JH Cole (1974) -
Nouar, F, Eckert, J., Eubank, J. F., Forster, P. & Eddaoudi, M. Zeolite-like metal–organic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesium ion-exchange and H2-(rho-ZMOF) interaction studies. J. Am. Chem. Soc. 131, 2864–2870 (2009).
(
10.1021/ja807229a
) / J. Am. Chem. Soc. by F Nouar (2009) -
Himsl, D., Wallacher, D. & Hartmann, M. Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. Angew. Chem. Int. Ed. 48, 4639–4642 (2009).
(
10.1002/anie.200806203
) / Angew. Chem. Int. Ed. by D Himsl (2009)
Dates
Type | When |
---|---|
Created | 15 years, 11 months ago (Aug. 24, 2009, 3:59 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 3:21 p.m.) |
Indexed | 2 weeks, 2 days ago (Aug. 5, 2025, 8:19 a.m.) |
Issued | 15 years, 11 months ago (Aug. 24, 2009) |
Published | 15 years, 11 months ago (Aug. 24, 2009) |
Published Online | 15 years, 11 months ago (Aug. 24, 2009) |
Published Print | 15 years, 11 months ago (Sept. 1, 2009) |
@article{Yang_2009, title={Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework}, volume={1}, ISSN={1755-4349}, url={http://dx.doi.org/10.1038/nchem.333}, DOI={10.1038/nchem.333}, number={6}, journal={Nature Chemistry}, publisher={Springer Science and Business Media LLC}, author={Yang, Sihai and Lin, Xiang and Blake, Alexander J. and Walker, Gavin S. and Hubberstey, Peter and Champness, Neil R. and Schröder, Martin}, year={2009}, month=aug, pages={487–493} }