Crossref journal-article
Springer Science and Business Media LLC
Nature Chemistry (297)
Bibliography

Zhu, L., Liu, H., Pickard, C. J., Zou, G., & Ma, Y. (2014). Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. Nature Chemistry, 6(7), 644–648.

Authors 5
  1. Li Zhu (first)
  2. Hanyu Liu (additional)
  3. Chris J. Pickard (additional)
  4. Guangtian Zou (additional)
  5. Yanming Ma (additional)
References 43 Referenced 396
  1. Grochala, W. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655 (2007). (10.1039/b702109g) / Chem. Soc. Rev. by W Grochala (2007)
  2. Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977). (10.1126/science.198.4316.453) / Science by E Anders (1977)
  3. Pepin, R. O. & Porcelli, D. Origin of noble gases in the terrestrial planets. Rev. Min. Geochem. 47, 191–246 (2002). (10.2138/rmg.2002.47.7) / Rev. Min. Geochem. by RO Pepin (2002)
  4. Sill, G. T. & Wilkening, L. L. Ice clathrate as a possible source of the atmospheres of the terrestrial planets. Icarus 33, 13–22 (1978). (10.1016/0019-1035(78)90020-9) / Icarus by GT Sill (1978)
  5. Wacker, J. F. & Anders, E. Trapping of xenon in ice: implications for the origin of the Earth's noble gases. Geochim. Cosmochim. Acta 48, 2373–2380 (1984). (10.1016/0016-7037(84)90232-1) / Geochim. Cosmochim. Acta by JF Wacker (1984)
  6. Matsuda, J-I. & Matsubara, K. Noble gases in silica and their implication for the terrestrial ‘missing’ Xe. Geophys. Res. Lett. 16, 81–84 (1989). (10.1029/GL016i001p00081) / Geophys. Res. Lett. by J-I Matsuda (1989)
  7. Caldwell, W. A. et al. Structure, bonding, and geochemistry of xenon at high pressures. Science 277, 930–933 (1997). (10.1126/science.277.5328.930) / Science by WA Caldwell (1997)
  8. Jephcoat, A. P. Rare-gas solids in the Earth's deep interior. Nature 393, 355–358 (1998). (10.1038/30712) / Nature by AP Jephcoat (1998)
  9. Sanloup, C. et al. Retention of xenon in quartz and Earth's missing xenon. Science 310, 1174–1177 (2005). (10.1126/science.1119070) / Science by C Sanloup (2005)
  10. Lee, K. K. M. & Steinle-Neumann, G. High-pressure alloying of iron and xenon: ‘missing’ Xe in the Earth's core? J. Geophys. Res. 111, B02202 (2006). / J. Geophys. Res. by KKM Lee (2006)
  11. Nishio-Hamane, D., Yagi, T., Sata, N., Fujita, T. & Okada, T. No reactions observed in Xe–Fe system even at Earth core pressures. Geophys. Res. Lett. 37, L04302 (2010). (10.1029/2009GL041953) / Geophys. Res. Lett. by D Nishio-Hamane (2010)
  12. Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–534 (2012). (10.1038/nature11506) / Nature by SS Shcheka (2012)
  13. Miao, M-S. Xe anions in stable Mg–Xe compounds: the mechanism of missing Xe in Earth atmosphere. Preprint at http://arxiv.org/abs/1309.0696 (2013).
  14. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991). (10.1016/0019-1035(91)90036-S) / Icarus by RO Pepin (1991)
  15. Sanloup, C., Bonev, S. A., Hochlaf, M. & Maynard-Casely, H. E. Reactivity of xenon with ice at planetary conditions. Phys. Rev. Lett. 110, 265501 (2013). (10.1103/PhysRevLett.110.265501) / Phys. Rev. Lett. by C Sanloup (2013)
  16. Brock, D. S. & Schrobilgen, G. J. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon. J. Am. Chem. Soc. 133, 6265–6269 (2011). (10.1021/ja110618g) / J. Am. Chem. Soc. by DS Brock (2011)
  17. Zhu, Q. et al. Stability of xenon oxides at high pressures. Nature Chem. 5, 61–65 (2013). (10.1038/nchem.1497) / Nature Chem. by Q Zhu (2013)
  18. Probert, M. I. J. An ab initio study of xenon retention in α-quartz. J. Phys. 22, 025501 (2010). / J. Phys. by MIJ Probert (2010)
  19. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010). (10.1103/PhysRevB.82.094116) / Phys. Rev. B by Y Wang (2010)
  20. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012). (10.1016/j.cpc.2012.05.008) / Comput. Phys. Commun. by Y Wang (2012)
  21. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science 340, 464–466 (2013). (10.1126/science.1233514) / Science by S Anzellini (2013)
  22. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003). (10.1063/1.1564060) / J. Chem. Phys. by J Heyd (2003)
  23. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006). (10.1063/1.2187006) / J. Chem. Phys. by J Paier (2006)
  24. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  25. Brostigen, G. et al. Compounds with the marcasite type crystal structure. V. The crystal structures of FeS2, FeTe2, and CoTe2 . Acta Chem. Scand. 24, 1925–1940 (1970). (10.3891/acta.chem.scand.24-1925) / Acta Chem. Scand. by G Brostigen (1970)
  26. Petitgrand, D. & Meyer, P. Far infrared antiferromagnetic resonance in FeCl2, FeBr2 and FeI2 . J. Phys. France 37, 1417–1422 (1976). (10.1051/jphys:0197600370120141700) / J. Phys. France by D Petitgrand (1976)
  27. Kim, M., Debessai, M. & Yoo, C-S. Two- and three-dimensional extended solids and metallization of compressed XeF2 . Nature Chem. 2, 784–788 (2010). (10.1038/nchem.724) / Nature Chem. by M Kim (2010)
  28. Miao, M-S. Caesium in high oxidation states and as a p-block element. Nature Chem. 5, 846–852 (2013). (10.1038/nchem.1754) / Nature Chem. by M-S Miao (2013)
  29. Katsura, T. High-pressure synthesis of the stoichiometric compound FeO. J. Chem. Phys. 47, 4559 (1967). (10.1063/1.1701668) / J. Chem. Phys. by T Katsura (1967)
  30. Connerade, J. P., Dolmatov, V. K. & Lakshmi, P. A. The filling of shells in compressed atoms. J. Phys. B 33, 251–264 (2000). (10.1088/0953-4075/33/2/310) / J. Phys. B by JP Connerade (2000)
  31. Chin, H. B. & Bau, R. The crystal structure of disodium tetracarbonylferrate. Distortion of the tetracarbonylferrate(2−) anion in the solid state. J. Am. Chem. Soc. 98, 2434–2439 (1976). (10.1021/ja00425a009) / J. Am. Chem. Soc. by HB Chin (1976)
  32. Belonoshko, A., Skorodumova, N., Rosengren, A. & Johansson, B. Melting and critical superheating. Phys. Rev. B 73, 012201 (2006). (10.1103/PhysRevB.73.012201) / Phys. Rev. B by A Belonoshko (2006)
  33. McDonough, W. F. in Treatise on Geochemistry Vol. 2, 547–568 (Pergamon, 2003). (10.1016/B0-08-043751-6/02015-6) / Treatise on Geochemistry by WF McDonough (2003)
  34. Oganov, A. R. in Treatise on Geophysics Vol. 2, 121–152 (Elsevier, 2007). (10.1016/B978-044452748-6.00033-X) / Treatise on Geophysics by AR Oganov (2007)
  35. Liu, Z-L., Yang, J-H., Cai, L-C., Jing, F-Q. & Alfè, D. Structural and thermodynamic properties of compressed palladium: ab initio and molecular dynamics study. Phys. Rev. B 83, 144113 (2011). (10.1103/PhysRevB.83.144113) / Phys. Rev. B by Z-L Liu (2011)
  36. Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: the Parrinello–Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003). (10.1103/PhysRevLett.90.075503) / Phys. Rev. Lett. by R Martoňák (2003)
  37. Pickard, C. J. & Needs, R. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006). (10.1103/PhysRevLett.97.045504) / Phys. Rev. Lett. by CJ Pickard (2006)
  38. Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. 23, 053201 (2011). / J. Phys. by CJ Pickard (2011)
  39. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. 21, 084204 (2009). / J. Phys. by W Tang (2009)
  40. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005). (10.1524/zkri.220.5.567.65075) / Z. Kristallogr. by SJ Clark (2005)
  41. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008). (10.1103/PhysRevB.78.134106) / Phys. Rev. B by A Togo (2008)
  42. Blaha, P., Schwarz, K., Sorantin, P. & Trickey, S. B. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). (10.1016/0010-4655(90)90187-6) / Comput. Phys. Commun. by P Blaha (1990)
  43. Luo, F., Chen, X-R., Cai, L-C. & Ji, G-F. Solid–liquid interfacial energy and melting properties of nickel under pressure from molecular dynamics. J. Chem. Eng. Data 55, 5149–5155 (2010). (10.1021/je1007058) / J. Chem. Eng. Data by F Luo (2010)
Dates
Type When
Created 11 years, 4 months ago (April 18, 2014, 6:38 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 4:04 p.m.)
Indexed 1 day, 14 hours ago (Sept. 4, 2025, 10:20 a.m.)
Issued 11 years, 4 months ago (April 20, 2014)
Published 11 years, 4 months ago (April 20, 2014)
Published Online 11 years, 4 months ago (April 20, 2014)
Published Print 11 years, 2 months ago (July 1, 2014)
Funders 0

None

@article{Zhu_2014, title={Reactions of xenon with iron and nickel are predicted in the Earth’s inner core}, volume={6}, ISSN={1755-4349}, url={http://dx.doi.org/10.1038/nchem.1925}, DOI={10.1038/nchem.1925}, number={7}, journal={Nature Chemistry}, publisher={Springer Science and Business Media LLC}, author={Zhu, Li and Liu, Hanyu and Pickard, Chris J. and Zou, Guangtian and Ma, Yanming}, year={2014}, month=apr, pages={644–648} }