Crossref journal-article
Springer Science and Business Media LLC
Nature Chemistry (297)
Bibliography

Zhang, M., de Respinis, M., & Frei, H. (2014). Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nature Chemistry, 6(4), 362–367.

Authors 3
  1. Miao Zhang (first)
  2. Moreno de Respinis (additional)
  3. Heinz Frei (additional)
References 57 Referenced 773
  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006). (10.1073/pnas.0603395103) / Proc. Natl Acad. Sci. USA by NS Lewis (2006)
  2. Alstrum-Acevedo, J. H., Brennaman, M. K. & Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005). (10.1021/ic050904r) / Inorg. Chem. by JH Alstrum-Acevedo (2005)
  3. Pushkar, Y. et al. Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc. Natl Acad. Sci. USA 105, 1879–1884 (2008). (10.1073/pnas.0707092105) / Proc. Natl Acad. Sci. USA by Y Pushkar (2008)
  4. Umena, Y., Kawakami, K., Shen, J-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011). (10.1038/nature09913) / Nature by Y Umena (2011)
  5. Tilak, B. V. et al. in Comprehensive Treatise of Electrochemistry Vol. 2 (eds Bockris, J. O. M. et al.) 1–97 (Plenum, 1981). / Comprehensive Treatise of Electrochemistry by BV Tilak (1981)
  6. Trasatti, S. in Electrochemistry of Novel Materials (eds Lipkowski, J. & Ross, P. N.) Ch. 5 (VCH Publishers, 1994). / Electrochemistry of Novel Materials by S Trasatti (1994)
  7. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008). (10.1126/science.1162018) / Science by MW Kanan (2008)
  8. Surendranath, Y., Dinca, M. & Nocera, D. G. Electrolyte dependent electrosynthesis and activity of cobalt based water oxidation catalysts. J. Am. Chem. Soc. 131, 2615–2620 (2009). (10.1021/ja807769r) / J. Am. Chem. Soc. by Y Surendranath (2009)
  9. Dinca, M., Surendranath, Y. & Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010). (10.1073/pnas.1001859107) / Proc. Natl Acad. Sci. USA by M Dinca (2010)
  10. Jiao, F. & Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 48, 1841–1844 (2009). (10.1002/anie.200805534) / Angew. Chem. Int. Ed. by F Jiao (2009)
  11. Jiao, F. & Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 46, 2920–2922 (2010). (10.1039/b921820c) / Chem. Commun. by F Jiao (2010)
  12. Zidki, T. et al. Water oxidation catalyzed by cobalt(II) adsorbed on silica nanoparticles. J. Am. Chem. Soc. 134, 14275–14278 (2012). (10.1021/ja304030y) / J. Am. Chem. Soc. by T Zidki (2012)
  13. Esswein, A. J. et al. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068–15072 (2009). (10.1021/jp904022e) / J. Phys. Chem. C by AJ Esswein (2009)
  14. Zaharieva, I. et al. Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 5, 7081–7089 (2012). (10.1039/c2ee21191b) / Energy Environ. Sci. by I Zaharieva (2012)
  15. Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010). (10.1021/ja104587v) / J. Am. Chem. Soc. by Y Gorlin (2010)
  16. Najafpour, M. M. et al. Calcium manganese(III) oxides (CaMn2O4 xH2O) as biomimetic oxygen-evolving catalysts. Angew. Chem. Int. Ed. 49, 2233–2237 (2010). (10.1002/anie.200906745) / Angew. Chem. Int. Ed. by MM Najafpour (2010)
  17. Gardner, G. P. et al. Structural requirements in lithium cobalt oxides for the catalytic oxidation of water. Angew. Chem. Int. Ed. 51, 1616–1619 (2012). (10.1002/anie.201107625) / Angew. Chem. Int. Ed. by GP Gardner (2012)
  18. Hong, D. et al. Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82−. J. Am. Chem. Soc. 134, 19572–19575 (2012). (10.1021/ja309771h) / J. Am. Chem. Soc. by D Hong (2012)
  19. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010). (10.1126/science.1185372) / Science by Q Yin (2010)
  20. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010). (10.1021/ja106102b) / J. Am. Chem. Soc. by Y Surendranath (2010)
  21. Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011). (10.1021/ja205647m) / J. Am. Chem. Soc. by JB Gerken (2011)
  22. McAlpin, J. G. et al. EPR Evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010). (10.1021/ja1013344) / J. Am. Chem. Soc. by JG McAlpin (2010)
  23. Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010). (10.1021/ja1023767) / J. Am. Chem. Soc. by MW Kanan (2010)
  24. Takashima, T., Hashimoto, K & Nakamura, R. Mechanism of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. J. Am. Chem. Soc. 134, 1519–1527 (2012). (10.1021/ja206511w) / J. Am. Chem. Soc. by T Takashima (2012)
  25. Pendlebury, S. R. et al. Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 47, 716–718 (2011). (10.1039/C0CC03627G) / Chem. Commun. by SR Pendlebury (2011)
  26. Barroso, M. et al. Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724–2734 (2013). (10.1039/c3sc50496d) / Chem. Sci. by M Barroso (2013)
  27. Cummings, C. Y. et al. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 48, 2027–2029 (2012). (10.1039/c2cc16382a) / Chem. Commun. by CY Cummings (2012)
  28. Klahr, B. et al. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ. Sci. 5, 7626–7636 (2012). (10.1039/c2ee21414h) / Energy Environ. Sci. by B Klahr (2012)
  29. Young, K. M. H. et al. Photocatalytic water oxidation with hematite electrodes. Catal. Sci. Tech. 3, 1660–1671 (2013). (10.1039/c3cy00310h) / Catal. Sci. Tech. by KMH Young (2013)
  30. Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004). (10.1021/ja0388764) / J. Am. Chem. Soc. by R Nakamura (2004)
  31. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds 5th edn, 155 (Wiley, 1997). / Infrared and Raman Spectra of Inorganic and Coordination Compounds by K Nakamoto (1997)
  32. Egan, J. W. et al. Crystal structure of a side-on superoxo complex of cobalt and hydrogen abstraction by a reactive terminal oxo ligand. J. Am. Chem. Soc. 112, 2445–2446 (1990). (10.1021/ja00162a069) / J. Am. Chem. Soc. by JW Egan (1990)
  33. Rajani, C., Kincaid, J. R. & Petering, D. H. Resonance Raman studies of HOO–Co(III)bleomycin and Co(III)bleomycin: identification of two important vibrational modes, ν(Co–OOH) and ν(O–OH). J. Am. Chem. Soc. 126, 3829–3836 (2004). (10.1021/ja030622v) / J. Am. Chem. Soc. by C Rajani (2004)
  34. Zecchina, A., Spoto, G. & Coluccia, S. Surface dioxygen adducts on MgO–CoO solid solutions: analogy with cobalt-based homogeneous oxygen carriers. J. Mol. Catal. 14, 351–355 (1982). (10.1016/0304-5102(82)80095-3) / J. Mol. Catal. by A Zecchina (1982)
  35. Shibahara, T. & Mori, M. Raman and infrared spectra of µ-O2 dicobalt(III) complexes. Bull. Chem. Soc. Jpn 51, 1374–1379 (1978). (10.1246/bcsj.51.1374) / Bull. Chem. Soc. Jpn by T Shibahara (1978)
  36. Barraclough, C. G., Lawrance, G. A. & Lay, P. A. Characterization of binuclear µ-peroxo and µ-superoxo cobalt(III) amine complexes from Raman spectroscopy. Inorg. Chem. 17, 3317–3322 (1978). (10.1021/ic50190a001) / Inorg. Chem. by CG Barraclough (1978)
  37. Urban, M. W., Nonaka, Y. & Nakamoto, K. Infrared and resonance Raman spectra of molecular oxygen adducts of [N,N′-ethylenebis(acetylacetoniminato)] cobalt(II). Inorg. Chem. 21, 1046–1049 (1982). (10.1021/ic00133a035) / Inorg. Chem. by MW Urban (1982)
  38. Nour, E. M. & Hester, R. E. Resonance Raman studies of oxygen binding in cobalt(III)-salen complexes. J. Mol. Struct. 62, 77–79 (1980). (10.1016/0022-2860(80)85224-0) / J. Mol. Struct. by EM Nour (1980)
  39. Giamello, E., Sojka, Z., Che, M. & Zecchina, A. Spectroscopic study of superoxide species formed by low-temperature adsorption of oxygen onto cobalt oxide (CoO)–magnesium oxide solid solutions: an example of synthetic heterogeneous oxygen carriers. J. Phys. Chem. 90, 6084–6091 (1986). (10.1021/j100281a008) / J. Phys. Chem. by E Giamello (1986)
  40. Shirai, H., Morioka, Y. & Nakagawa, I. Infrared and Raman spectra and lattice vibrations of some oxide spinels. J. Phys. Soc. Jpn 51, 592–597 (1982). (10.1143/JPSJ.51.592) / J. Phys. Soc. Jpn by H Shirai (1982)
  41. Dimitrou, K. et al. Mixed-valence, tetranuclear cobalt(III,IV) complexes: preparation and properties of [Co4O4(O2CR)2(bpy)4]3+ salts. Chem. Commun. 1284–1285 (2001). (10.1039/b102008k)
  42. Pfaff, F. F. et al. An oxo cobalt(IV) complex stabilized by Lewis acid interactions with scandium(III) ions. Angew. Chem. Int. Ed. 50, 1711–1715 (2011). (10.1002/anie.201005869) / Angew. Chem. Int. Ed. by FF Pfaff (2011)
  43. Lacy, D. C., Park, Y. J., Ziller, J. W., Yano, J. & Borovik, A. S. Assembly and properties of heterobimetallic CoII/III/CaII complexes with aquo and hydroxo ligands. J. Am. Chem. Soc. 134, 17526–17535 (2012). (10.1021/ja304525n) / J. Am. Chem. Soc. by DC Lacy (2012)
  44. Rigsby, M. L. et al. Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O2 evolution. Chem. Sci. 3, 3058–3062 (2012). (10.1039/c2sc20755a) / Chem. Sci. by ML Rigsby (2012)
  45. Rohde, J. U. et al. Crystallographic and spectroscopic characterization of a nonheme Fe(IV)=O complex. Science 299, 1037–1039 (2003). (10.1126/science.299.5609.1037) / Science by JU Rohde (2003)
  46. Xu, X. L., Chen, Z. H., Li, Y., Chen, W. K. & Li, J. Q. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603, 653–658 (2009). (10.1016/j.susc.2008.12.036) / Surf. Sci. by XL Xu (2009)
  47. Garcia Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 116, 21077–21082 (2012). (10.1021/jp306303y) / J. Phys. Chem. C by M Garcia Mota (2012)
  48. Chen, J. & Selloni, A. Water adsorption and oxidation at the Co3O4(110) surface. J. Phys. Chem. Lett. 3, 2808–2814 (2012). (10.1021/jz300994e) / J. Phys. Chem. Lett. by J Chen (2012)
  49. Chivot, J., Mendoza, L., Mansour, C., Pauporte, T. & Cassir, M. New insight in the behaviour of Co–H2O system at 25–150 °C, based on revised Pourbaix diagrams. Corros. Sci. 50, 62–69 (2008). (10.1016/j.corsci.2007.07.002) / Corros. Sci. by J Chivot (2008)
  50. Yeo, B. S. & Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 133, 5587–5593 (2011). (10.1021/ja200559j) / J. Am. Chem. Soc. by BS Yeo (2011)
  51. Wang, L. P. & Van Voorhis, T. Direct-coupling O2 bond forming a pathway in cobalt oxide water oxidation catalysts. J. Phys. Chem. Lett. 2, 2200–2204 (2011). (10.1021/jz201021n) / J. Phys. Chem. Lett. by LP Wang (2011)
  52. Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. Mediator-assisted water oxidation by the ruthenium ‘blue dimer’ cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+. Proc. Natl Acad. Sci. USA 105, 17632–17635 (2008). (10.1073/pnas.0807153105) / Proc. Natl Acad. Sci. USA by JJ Concepcion (2008)
  53. Sivasankar, N., Weare, W. W. & Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133, 12976–12979 (2011). (10.1021/ja205300a) / J. Am. Chem. Soc. by N Sivasankar (2011)
  54. Lever, A. B. P., Ozin, G. A. & Gray, H. B. Electron transfer in metal–dioxygen adducts. Inorg. Chem. 19, 1823–1824 (1980). (10.1021/ic50208a085) / Inorg. Chem. by ABP Lever (1980)
  55. Gamelin, D. R. Water splitting: Catalyst or spectator? Nature Chem. 4, 965–967 (2012). (10.1038/nchem.1514) / Nature Chem. by DR Gamelin (2012)
  56. Agiral, A., Soo, H. S. & Frei, H. Visible light induced hole transport from sensitizer to Co3O4 water oxidation catalyst across nanoscale silica barrier with embedded molecular wires. Chem. Mater. 25, 2264–2273 (2013). (10.1021/cm400759f) / Chem. Mater. by A Agiral (2013)
  57. Zhou, M., Robertson, G. P. & Roovers, J. Comparative study of ruthenium(II) tris(bipyridine) derivatives for electrochemiluminescence application. Inorg. Chem. 44, 8317–8325 (2005). (10.1021/ic0510112) / Inorg. Chem. by M Zhou (2005)
Dates
Type When
Created 11 years, 6 months ago (Feb. 21, 2014, 3:02 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 4:04 p.m.)
Indexed 27 minutes ago (Sept. 3, 2025, 11:03 p.m.)
Issued 11 years, 6 months ago (Feb. 23, 2014)
Published 11 years, 6 months ago (Feb. 23, 2014)
Published Online 11 years, 6 months ago (Feb. 23, 2014)
Published Print 11 years, 5 months ago (April 1, 2014)
Funders 0

None

@article{Zhang_2014, title={Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst}, volume={6}, ISSN={1755-4349}, url={http://dx.doi.org/10.1038/nchem.1874}, DOI={10.1038/nchem.1874}, number={4}, journal={Nature Chemistry}, publisher={Springer Science and Business Media LLC}, author={Zhang, Miao and de Respinis, Moreno and Frei, Heinz}, year={2014}, month=feb, pages={362–367} }