Crossref
journal-article
Springer Science and Business Media LLC
Nature Cell Biology (297)
References
65
Referenced
309
-
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).
(
10.1126/science.1141448
) / Science by WE Balch (2008) -
Lindquist, S. L. & Kelly, J. W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 3, 1–34 (2011).
(
10.1101/cshperspect.a004507
) / Cold Spring Harb. Perspect. Biol. by SL Lindquist (2011) -
Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Ann. Rev. Biochem. 75, 333–366 (2006).
(
10.1146/annurev.biochem.75.101304.123901
) / Ann. Rev. Biochem. by F Chiti (2006) -
Houck, S.A., Singh, S. & Cyr, D. M. Cellular responses to misfolded proteins and protein aggregates. Methods Mol. Biol. 832, 455–461 (2012).
(
10.1007/978-1-61779-474-2_32
) / Methods Mol. Biol. by SA Houck (2012) -
Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3, a004374 (2011).
(
10.1101/cshperspect.a004374
) / Cold Spring Harb. Perspect. Biol. by B Chen (2011) -
Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).
(
10.1038/nature07195
) / Nature by D Kaganovich (2008) -
Specht, S., Miller, S. B., Mogk, A. & Bukau, B. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195, 617–629 (2011).
(
10.1083/jcb.201106037
) / J. Cell Biol. by S Specht (2011) -
Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D. & Alberti, S. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol. Biol. Cell 23, 3041–3056 (2012).
(
10.1091/mbc.e12-03-0194
) / Mol. Biol. Cell by L Malinovska (2012) -
Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898 (1998).
(
10.1083/jcb.143.7.1883
) / J. Cell Biol. by JA Johnston (1998) -
Zhang, X. & Qian, S. B. Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol. Biol. Cell 22, 3277–3288 (2011).
(
10.1091/mbc.e11-05-0388
) / Mol. Biol. Cell by X Zhang (2011) -
Douglas, P. M., Summers, D. W. & Cyr, D. M. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways. Prion 3, 51–58 (2009).
(
10.4161/pri.3.2.8587
) / Prion by PM Douglas (2009) -
Cohen, E., Bieschke, J., Perciavalle, R. M., Kelly, J. W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).
(
10.1126/science.1124646
) / Science by E Cohen (2006) -
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).
(
10.1038/nature02998
) / Nature by M Arrasate (2004) -
Liu, B. et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267 (2010).
(
10.1016/j.cell.2009.12.031
) / Cell by B Liu (2010) -
Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).
(
10.1016/j.cell.2007.05.021
) / Cell by H Nakatogawa (2007) -
Sheth, U. & Parker, R. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125, 1095–1109 (2006).
(
10.1016/j.cell.2006.04.037
) / Cell by U Sheth (2006) -
Toshima, J. Y. et al. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc. Natl Acad. Sci. USA 103, 5793–5798 (2006).
(
10.1073/pnas.0601042103
) / Proc. Natl Acad. Sci. USA by JY Toshima (2006) -
Wright, R., Basson, M., D’Ari, L. & Rine, J. Increased amounts of HMG-CoA reductase induce ”karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J. Cell Biol. 107, 101–114 (1988).
(
10.1083/jcb.107.1.101
) / J. Cell Biol. by R Wright (1988) -
Shibata, Y., Voeltz, G. K. & Rapoport, T. A. Rough sheets and smooth tubules. Cell 126, 435–439 (2006).
(
10.1016/j.cell.2006.07.019
) / Cell by Y Shibata (2006) -
Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. & Rapoport, T. A. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573–586 (2006).
(
10.1016/j.cell.2005.11.047
) / Cell by GK Voeltz (2006) -
Shibata, Y. et al. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 283, 18892–18904 (2008).
(
10.1074/jbc.M800986200
) / J. Biol. Chem. by Y Shibata (2008) -
West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193, 333–346 (2011).
(
10.1083/jcb.201011039
) / J. Cell Biol. by M West (2011) -
McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003).
(
10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2
) / Cell Stress Chaperones by H McDonough (2003) -
Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62, 670–684 (2005).
(
10.1007/s00018-004-4464-6
) / Cell Mol. Life Sci. by MP Mayer (2005) -
McClellan, A. J., Scott, M. D. & Frydman, J. Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell 121, 739–748 (2005).
(
10.1016/j.cell.2005.03.024
) / Cell by AJ McClellan (2005) -
Coppinger, J. A. et al. A chaperone trap contributes to the onset of cystic fibrosis. PLoS One 7, e37682 (2012).
(
10.1371/journal.pone.0037682
) / PLoS One by JA Coppinger (2012) -
Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl Acad. Sci. USA 93, 14536–14541 (1996).
(
10.1073/pnas.93.25.14536
) / Proc. Natl Acad. Sci. USA by C Schneider (1996) -
Becker, J., Walter, W., Yan, W. & Craig, E. A. Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell Biol. 16, 4378–4386 (1996).
(
10.1128/MCB.16.8.4378
) / Mol. Cell Biol. by J Becker (1996) -
Caplan, A. J., Tsai, J., Casey, P. J. & Douglas, M. G. Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem. 267, 18890–18895 (1992).
(
10.1016/S0021-9258(19)37044-9
) / J. Biol. Chem. by AJ Caplan (1992) -
Flom, G. A., Lemieszek, M., Fortunato, E. A. & Johnson, J. L. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol. Biol. Cell 19, 5249–5258 (2008).
(
10.1091/mbc.e08-04-0435
) / Mol. Biol. Cell by GA Flom (2008) -
Kampinga, H. H. & Craig, E. A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579–592 (2010).
(
10.1038/nrm2941
) / Nat. Rev. Mol. Cell Biol. by HH Kampinga (2010) -
Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T. & Brodsky, J. L. Distinct rolesfor the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol. Biol. Cell 15, 4787–4797 (2004).
(
10.1091/mbc.e04-07-0584
) / Mol. Biol. Cell by RT Youker (2004) -
Shorter, J. & Lindquist, S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724 (2008).
(
10.1038/emboj.2008.194
) / EMBO J. by J Shorter (2008) -
Tipton, K. A., Verges, K. J. & Weissman, J. S. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol. Cell 32, 584–591 (2008).
(
10.1016/j.molcel.2008.11.003
) / Mol. Cell by KA Tipton (2008) -
Gupta, R. et al. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8, 879–884 (2011).
(
10.1038/nmeth.1697
) / Nat. Methods by R Gupta (2011) -
Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi +]. Science 268, 880–884 (1995).
(
10.1126/science.7754373
) / Science by YO Chernoff (1995) -
Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).
(
10.1016/S1097-2765(00)80412-8
) / Mol. Cell by N Sondheimer (2000) -
Meriin, A. B. et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004 (2002).
(
10.1083/jcb.200112104
) / J. Cell Biol. by AB Meriin (2002) -
Piper, P. W. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol. Lett. 134, 121–127 (1995).
(
10.1111/j.1574-6968.1995.tb07925.x
) / FEMS Microbiol. Lett. by PW Piper (1995) -
Trotter, E. W. et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 277, 44817–44825 (2002).
(
10.1074/jbc.M204686200
) / J. Biol. Chem. by EW Trotter (2002) -
Morimoto, R. I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008).
(
10.1101/gad.1657108
) / Genes Dev. by RI Morimoto (2008) -
Conn, C. S. & Qian, S. B. mTOR signaling in protein homeostasis: less is more? Cell Cycle 10, 1940–1947 (2011).
(
10.4161/cc.10.12.15858
) / Cell Cycle by CS Conn (2011) -
Taylor, R. C. & Dillin, A. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3, 1–17 (2011).
(
10.1101/cshperspect.a004440
) / Cold Spring Harb. Perspect. Biol. by RC Taylor (2011) -
Fabrizio, P. & Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2, 73–81 (2003).
(
10.1046/j.1474-9728.2003.00033.x
) / Aging Cell by P Fabrizio (2003) -
Narayanaswamy, R. et al. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc. Natl Acad. Sci. USA 106, 10147–10152 (2009).
(
10.1073/pnas.0812771106
) / Proc. Natl Acad. Sci. USA by R Narayanaswamy (2009) -
Peters, T. W. et al. Tor1 regulates protein solubility in Saccharomyces cerevisiae. Mol. Biol. Cell 23, 4679–4688 (2012).
(
10.1091/mbc.e12-08-0620
) / Mol. Biol. Cell by TW Peters (2012) -
Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010).
(
10.1016/j.cmet.2010.05.001
) / Cell Metab. by P Kapahi (2010) -
Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).
(
10.1016/S0092-8674(00)81223-4
) / Cell by JR Glover (1998) -
Mandal, A. K. et al. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol. Biol. Cell 21, 1439–1448 (2010).
(
10.1091/mbc.e09-09-0779
) / Mol. Biol. Cell by AK Mandal (2010) -
Huyer, G. et al. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem. 279, 38369–38378 (2004).
(
10.1074/jbc.M402468200
) / J. Biol. Chem. by G Huyer (2004) -
Ouellet, J. & Barral, Y. Organelle segregation during mitosis: lessons from asymmetrically dividing cells. J. Cell Biol. 196, 305–313 (2012).
(
10.1083/jcb.201102078
) / J. Cell Biol. by J Ouellet (2012) -
Zhou, C. et al. Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 147, 1186–1196 (2011).
(
10.1016/j.cell.2011.11.002
) / Cell by C Zhou (2011) -
Gidalevitz, T., Krupinski, T., Garcia, S. & Morimoto, R. I. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet. 5, e1000399 (2009).
(
10.1371/journal.pgen.1000399
) / PLoS Genet. by T Gidalevitz (2009) -
Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011).
(
10.1016/j.cell.2010.11.050
) / Cell by H Olzscha (2011) -
Kikis, E. A., Gidalevitz, T. & Morimoto, R. I. Protein homeostasis in models of aging and age-related conformational disease. Adv. Exp. Med. Biol. 694, 138–159 (2010).
(
10.1007/978-1-4419-7002-2_11
) / Adv. Exp. Med. Biol. by EA Kikis (2010) -
Shorter, J. Hsp104: a weapon to combat diverse neurodegenerative disorders. Neurosignals 16, 63–74 (2008).
(
10.1159/000109760
) / Neurosignals by J Shorter (2008) -
Gidalevitz, T., Prahlad, V. & Morimoto, R. I. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Perspect. Biol. 3, 1–18 (2011).
(
10.1101/cshperspect.a009704
) / Cold Spring Harb. Perspect. Biol. by T Gidalevitz (2011) -
Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).
(
10.1016/j.cell.2010.12.016
) / Cell by J Durieux (2011) -
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).
(
10.1126/science.285.5429.901
) / Science by EA Winzeler (1999) -
Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell Biol. 15, 3917–3925 (1995).
(
10.1128/MCB.15.7.3917
) / Mol. Cell Biol. by DF Nathan (1995) -
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).
(
10.1016/j.cell.2005.09.024
) / Cell by M Kaksonen (2005) -
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
(
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
) / Yeast by MS Longtine (1998) -
Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).
(
10.1002/yea.1142
) / Yeast by C Janke (2004) -
Alberti, S., Gitler, A. D. & Lindquist, S. A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24, 913–919 (2007).
(
10.1002/yea.1502
) / Yeast by S Alberti (2007) -
Furuta, N., Fujimura-Kamada, K., Saito, K., Yamamoto, T. & Tanaka, K. Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol. Biol. Cell 18, 295–312 (2007).
(
10.1091/mbc.e06-05-0461
) / Mol. Biol. Cell by N Furuta (2007)
Dates
Type | When |
---|---|
Created | 11 years, 11 months ago (Sept. 13, 2013, 1:23 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 3:41 p.m.) |
Indexed | 11 hours, 37 minutes ago (Aug. 30, 2025, 1 p.m.) |
Issued | 11 years, 11 months ago (Sept. 15, 2013) |
Published | 11 years, 11 months ago (Sept. 15, 2013) |
Published Online | 11 years, 11 months ago (Sept. 15, 2013) |
Published Print | 11 years, 10 months ago (Oct. 1, 2013) |
@article{Escusa_Toret_2013, title={Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress}, volume={15}, ISSN={1476-4679}, url={http://dx.doi.org/10.1038/ncb2838}, DOI={10.1038/ncb2838}, number={10}, journal={Nature Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Escusa-Toret, Stéphanie and Vonk, Willianne I. M. and Frydman, Judith}, year={2013}, month=sep, pages={1231–1243} }